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Abstract 

Local scour and liquefaction are two of the most important processes which affect the interactions 

between fluid, object and sediment when an object (such as bridge pier, offshore foundation, etc.) is 

exposed to currents and waves. In the present study, numerical models are developed to understand 

these complicated processes. 

For the local scour process, two-dimensional and three-dimensional models are developed re­

spectively. In the two-dimensional model, shallow water equations with finite volume method on 

unstructured mesh are used. The two-dimensional model uses the Godunov scheme and approxi­

mate Riemann solvers. Hydrodynamics and sediment transport equations are coupled and solved 

simultaneously. Asymptotic analysis of the system eigenvalues is given and the approximation is 

compared with the numerical results. The model developed in this thesis can deal with wetting and 

drying automatically. Discontinuity of the flow, such as a hydraulic jump, can be captured. For 

the three dimensional model, free water surface and automatic mesh deformation for the bed are 

incorporated in the model. The Reynolds Averaged Navier-Stokes (RANS) turbulence model is 

used to simulate the turbulent flow field. The turbulence model used is k- e Model. Two interfaces 

(water and air, water and sediment) present in the domain are captured with different approaches. 

The free surface of the flow is captured by Volume of Fluid (VOF) scheme which is an Eulerian 

approach. A new method for the VOF scheme is proposed to reduce the computational time while 

retaining relatively good accuracy. The water-sediment interface (bed) is captured with a mov­

ing mesh method which is a Lagrangian approach. Unlike the two-dimensional model, the flow 

field is coupled with sediment transport (both bed load and suspended load) using a quasi-steady 

approach. Numerical simulations are carried out and compared with experimental results. Good 
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results are obtained with the proposed model. The flow field compares well with the experimental 

observations. Scour patterns are similar to the experimental data. Long computational time is 

needed for morphological simulation and parallel computation is used to accelerate this process. 

Three-dimensional model can capture the detailed flow structure around an object and predict the 

scour process more accurately. However, the two-dimensional model can be used as a fast assess­

ment tool for large computational domains. 

For the liquefaction process, two different mechanisms (momentary and residual) are con­

sidered. For momentary liquefaction, a three-dimensional numerical model for the sea bed re­

sponse under free surface water waves is constructed. Free water surface is modeled by volume 

of fluid (VOF) method and water waves are generated by numerical wave-maker boundary con­

dition. An iterative numerical scheme is proposed to solve the Biot consolidation equation using 

a finite volume method (FVM). The coupling between water wave and sea bed is through both 

pressure and stress* conditions' oncommon boundaries. For residual liquefaction, the solutions to 

the one-dimensional model equation of the period-averaged pore pressure buildup are listed. The 

accumulation of pore pressure is modeled as the effect of the source term in the storage equation. 

Corrections to the solutions in the literature are provided. For deep soil condition, an asymptotic 

solution is proposed to estimate the pore pressure. A numerical model is also developed to solve 

the one-dimensional period-averaged pore pressure buildup equation. Good agreement between 

the results of numerical model and analytical model are found. These results also agree with the 

experiment data. A tentative step is also made to model the phase-resolved pore pressure. The 

basic idea of adding a source term to the governing equation is explored. The source term has the 

same form as that of the period-averaged residual pore pressure model. Test case shows that this 

model gives good results comparing to the one-dimensional period-averaged model. 
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Chapter 1 

Introduction 

1.1 Motivations 

When an object (bridge pier, offshore structure foundation, sea mine etc.) is placed in the river or 

in the ocean, the flow field will be affected, and the capacity of water for carrying sediment will 

also be changed (see Figure 1.1). One or more of the following will happen (Sumer and Freds0e 

2002): contraction of flow, vortices formed in the front of or in the lee-wake of the object, turbu­

lence generation, reflection and diffraction of waves, wave breaking, and high pressure gradient 

in the adjacent sediment. These will cause scour around the object, and sometimes it will make 

the structure fail. It is important for engineers to understand the process of scour and to make 

better designs to prevent or mitigate the damage. Scour around objects in rivers and oceans has 

been a continuous research interest because of its importance (Breusers et al. 1977; Breusers and 

Raudkivi 1991; Dey 1997; Melville 1997; Melville and Sutherland 1988; Melville and Coleman 

2000; Raudkivi 1986). It is still an open subject since many problems have not yet been solved. 

These problems include the free surface effect on the scour process, changing the computational 

mesh when the bed is deformed, etc. New numerical techniques and improved models should be 

used to improve our understanding of scour problem. 

Another important fact which is closely related to scour is liquefaction. Figure 1.2 shows 

an experiment done in the Ven Te Chow Hydrosystems Laboratory at the University of Illinois at 

Urbana and Champaign where a short cylinder sunk into the sediment when liquefaction took place 

(Catafio-Lopera 2005). The figure also shows the sediment movement and scour around the object. 

Liquefaction could be due to earthquake or wave action (ocean storm). Much experimental work 

1 
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Figure 1.1: Scour around Piles: (a) Bridge Pier (www.ifh.uni-karlsruhe.de) (b) Scour Experiment 
in Hydrosystems Laboratory, University of Illinois 
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has been done (Sakai et al. 1994; Sumer et al. 1999), and numerical models have been developed 

(Magda 1996; Jeng and Lin 1999; Gao et al. 2003) to understand this complicated process. There 

are also many analytical models which describe the sea bed response and give fairly good results 

(Yamamoto 1977; Mei and Foda 1981; Jeng and Hsu 1996; Yuhi and Ishida 2002). Although there 

exists many numerical models on sea bed response under waves, most of them simply estimate 

wave pressure distribution on the water-bed interface using wave theory. This is true if there are 

only water waves and sea bed interactions. However, for the case when there are extra objects 

in the system (such as pile, semi-buried foundation, etc.), the water flow around the object will 

be highly three-dimensional, therefore making it difficult to get an' analytical solution from wave 

theory. With the use of computational fluid dynamics (CFD), the flow field can be solved and used 

as an input for the numerical modeling of liquefaction. 

Other mechanisms, as pointed out in Bennett and Dolan (2001), such as impact penetration, 

gravity settlement, bedforrn migration, shakedown, sliding, even biological activity will also have 

important effects on the interactions between object, fluid and sea bed. These mechanisms are not 

completely understood (Catano-Lopera 2005). They are closely related and affect each other. The 

whole process is governed by the joint action of all these mechanisms even though some of them 

might be dominant. In this research, only scour and liquefaction will be investigated. 

1.2 Objectives of This Research 

The main goal of this research is to use numerical models to predict the effect of scour and lique­

faction around objects. 

For the scour process, two-dimensional and three-dimensional models are developed respec­

tively to predict scour under different temporal and spatial scales. The 2D model will utilize the 

Godunov scheme and approximate Riemann solvers. Other depth-averaged 2D numerical models 

in the literature for sediment transport and river morphology have obtained good results with this 

approach, for example Duan and Nanda (2006) and Wu (2004) among many others. These models 

3 
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Figure 1.2: Scour and Liquefaction Effect around a Cylinder Sitting on the Bed 
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usually assume that the time scale of sediment transport is much larger than that of the flow field. 

Based on this assumption, the quasi-steady approach is used most of the time. However, this as­

sumption is not always true when the bed morphological change is fast. In this thesis, a coupled 

two-dimensional model for both hydrodynamics and sediment transport will be developed. Also, 

the computational domain for a real world case is complicated, and an unstructured mesh is nec­

essary. Numerical calculation of the system wave speeds when using unstructured mesh is slow 

and inefficient. Asymptotic expansion is used to estimate such wave speeds. The model developed 

in this research can deal with wetting and drying automatically. Discontinuity of the flow can 

be captured. In the 3D model, since there are at least three phases (water, object and sediment), 

the interfaces between these phases need to be captured. Although different interface capturing 

methods can be used, each interface has its own characteristics and appropriate methods should 

be chosen for each of them. For the free water surface, an Eulerian approach is used while for 

the bed interface, a Lagrangian approach is chosen. To take into account the deformation of the 

fluid domain, a mesh deformation method should be used to smoothly move each grid point in the 

domain. 

For the liquefaction process, two different mechanisms (momentary and residual) will be con­

sidered. For momentary liquefaction, a three-dimensional numerical model for the sea bed re­

sponse under free surface water waves will be developed. Free surface is modeled by the volume 

of fluid (VOF) method, and water waves are generated by numerical wave maker boundary con­

dition. An iterative numerical scheme is proposed to solve the Biot consolidation equation using 

the finite volume method (FVM). The coupling between water wave and sea bed is through pres­

sure and stress condition on common boundaries. For residual liquefaction, the solutions to the 

one-dimensional model equation of the period-averaged pore pressure buildup are listed. A source 

term is added to the storage equation to model the pore pressure buildup. Corrections to the so­

lutions available in the literature are provided. For deep soil, an asymptotic solution is proposed 

to estimate the pore pressure. In addition, a tentative step is made to model the phase-resolved 

residual pore pressure. 

5 
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The numerical models developed in this study can be used in engineering practice as a tool 

to guide the design, construction, and operation of structures in rivers and oceans. These models 

can also be used as a research tool to further understand the complete mechanisms of scour and 

liquefaction. 

1.3 Methodology 

This study is mainly based on numerical models. For scour problem, two-dimensional and three-

dimensional numerical models are developed to simulate the flow field and sediment transport 

processes. Both codes are based on the finite volume method. The two-dimensional code solves 

the shallow water equations on unstructured meshes. It is suitable for large scale and long term 

simulations. This is an in-house research code developed in the Ven Te Chow Hydrosystems 

Laboratory at UIUC. The three-dimensional code is developed on the platform of an open source 

computational fluid dynamics (CFD) code named OpenFOAM (OpenCFD 2006). The fluid flow 

solver is adapted from the original turbulence flow solver and a sediment transport solver is added 

to it. For liquefaction potential simulation, the numerical model is also based on OpenFOAM since 

it provides a platform for the numerical solution of partial differential equations. Coupled solver 

of free surface flow and consolidation is developed to simulate the sea bed response under waves. 

Numerical test cases are selected from the literature for the purpose of validation and testing of the 

capabilities of the model. 

Most of the simulations are done in the supercomputers in National Center for Supercomputing 

Applications (NCSA) at University of Illinois at Urbana and Champaign. Parallel computations 

are used (especially the three dimensional model of scour and liquefaction) extensively to reduce 

the required computer time. 
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1.4 Outline of the Dissertation 

In chapter 2, the two-dimensional numerical model for scour is introduced. The finite volume 

method solver for the non-linear shallow water equations is described. Two-dimensional Riemann 

problem approximate solvers used in the code are briefly described. Numerical simulations of 

scour problems in a large domain and for long evolution time are carried out. In Chapter 3, the 

three-dimensional scour model with free water surface and automatic mesh deformation is elabo­

rated. Free surface capturing methods and bed surface resolving methods are described. A novel 

mesh deformation method is used to automatically move the mesh for the scour problem. Dis­

cussions on the merits and shortcomings of different interface capturing methods are given at the 

end of the chapter. Chapter 4 describes the three-dimensional, coupled model for the liquefaction 

evaluation. Fluid field solver is similar to that of three-dimensional scour model while consolida­

tion solver is written based on the new iterative algorithm using finite volume method. Chapter 

5 introduces the one-dimensional period-averaged residual pore water buildup model. Corrected 

solutions and a new asymptotic estimation for deep sediment deposits are given. Numerical model 

is also developed for the period-averaged pore pressure. A tentative step is made to model the 

phase-resolved pore pressure numerically. Chapter 6 is a summary of the thesis findings. In the 

appendixes, the derivations of some of the equations used in this thesis are given. 
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Chapter 2 

Two Dimensional Model for Scour Around 
Object Using Shallow Water Equations on 
Unstructured Mesh 

2.1 Introduction 

Scour due to sediment transport has been one of the most important engineering problems be­

cause it will endanger the stability of structures such as bridges (Sumer and Freds0e 2002). Many 

two-dimensional and three-dimensional numerical models have been developed to simulate the 

scour process (Beek and Wind 1990; Olsen and Melaaen 1993; 1999; Br0rs 1999; Li and Cheng 

2001; Neyshabouri et al. 2003; Due et al. 2004; Wu 2004; Roulund et al. 2005; Duan and Nanda 

2006). While three-dimensional models can give more detailed information on the flow and tur­

bulence structure, they require considerable computational efforts (Liu and Garcia 2006a). Two-

dimensional models can give quick assessment of the scour pattern and relatively accurate max­

imum scour depth. The fast evaluation of these scour parameters are important for the design, 

construction and operation of hydraulic structures. It is of critical importance in the case of scour 

due to dam failure or dike break flow. In this paper, a two-dimensional model coupling hydrody-

namic and scour processes will be developed. 

The hydrodynamic component of many two-dimensional models is the depth averaged shal­

low water equations (SWEs) in which the hydrostatic assumption is implied. Higher order finite 

volume methods on unstructured triangular grids for shallow water equations have been developed 

and have achieved high accuracy (Anastasiou and Chan 1997; Yoon and Kang 2004). The unstruc-

*This chapter, as a manuscript, is under review for possible publication in Coastal Engineering 
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tared mesh makes the application of SWEs for complex geometries easier. However, the treatment 

of the pressure and bed-slope terms should be compatible with other terms in the equations when 

discretizing on an unstructured mesh (Farshi and Komaei 2005). Special care should be taken to 

make the scheme compatible and conservative. Otherwise, non-physical results will be observed 

after several time steps (Nujic 1995). 

For finite volume methods (FVM) solving shallow water equations, one of the most important 

properties is called the C-property which describes the stationary state when the flux gradients 

balance the slope source term (Bermudez and Vazquez 1994). LeVeque (1998) developed a wave-

propagation algorithm by solving the Riemann problem at the cell center and canceling the source 

term with the flux difference exactly. Another important contribution in dealing with this problem 

is the surface gradient method (SGM) (Zhou et al. 2001; 2002). The basic assumption is that the 

water surface is smoother than the bottom. Instead of conservative variables, the surface gradi­

ent method uses the water surface level to reconstruct the Riemman states at the cell interfaces. 

Rogers et al. (2003) proposed a novel method which reformulates the conservation laws in terms 

of the deviations from equilibrium. This mathematical reformulation introduces extra physical 

information and avoids the conventional numerical treatment of the imbalance. Another method 

of equation reformulation is to rewrite the bed slope term in divergence form. An exact balance 

between flux gradient and source term is achieved when both terms are discretized by compatible 

schemes (Valiani and Begnudelli 2006; Liu and Garcia 2007b). For the hyperbolic system which is 

expanded by adding sediment transport equation in this chapter, the divergence form is not suitable 

for the source term. 

Godunov scheme with an appropriate Riemann solver can capture the steep water surface el­

evation gradient even discontinuities. For the coupled system of hydrodynamics and sediment 

transport, it can be used where a dramatic water surface change occurs, e.g. scour due to dam 

break flow and strong transient flow. Based on the hyperbolic nature of the coupled system, De-

Vriend (1987a) and DeVriend (1987b) analyzed the waves and their interactions, although the 

analysis was on the system of primitive variables. Since then, the coupled system of shallow water 
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and bed sediment conservation equations has been studied by many researchers. Lyn (1987) and 

Lyn and Altinakar (2002) identified the different scales of the one-dimensional system and gave the 

asymptotic approximation of the wave speeds in different flow regimes. For one-dimensional sys­

tem under some simplifications, the wave speeds can be expressed explicitly (Hudson and Sweby 

2003; Hudson et al. 2005). On a structured mesh, the waves associated with the two-dimensional 

system can also be analyzed by splitting the system into different directions (Hudson and Sweby 

2005). On a unstructured mesh, the equation system is more complicated and difficult to analyze. 

This is one of the problems which will be dealt with in this paper. 

There is still a debate on the characteristic of the coupled system of SWEs and sediment con­

servation equation (i.e., Exner's equation). Cao et al. (2002) emphasized on the hyperbolicity of 

the coupled system while Cui et al. (2005) argued that the evolution of the sediment waves can be 

dominated by dispersion. Different interpretation of the equations is most often due to the differ­

ent flow regimes. In different regimes, the dominant terms in the governing equations will change. 

Cui and Parker (1997) did some linear stability analysis and found the conditions for the dispersive 

domination are that the Froude number should not be too far from unity, the sediment transport 

rate should be low, and the wavelength of the bed forms should be long. In the author's opinion, 

the question of which term is dominant is only relevant for analysis. Since for a numerical model 

all the terms are included, the nature of the coupled system will reveal itself through the simulation 

results. 

In this chapter, the hydrodynamics and sediment transport are coupled and solved together in 

one step. Special treatment of the source term on unstructured grid will make the scheme stable 

and physically balanced (conserving both mass and momentum). The methodology of expanding 

the SWEs with sediment transport can also be used to expand the system with other equations 

(such as scalar transportation). Asymptotic analysis of the system eigenvalues will be given and 

the approximation will be compared with the numerical results. Finally, test cases will be used to 

verify the numerical model. The hydrodynamic part of the model is tested against the experiment 

of dam break flow in an 90° bend. Then, the coupled model is tested on the scour problem around a 
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spur dike by surge waves. The result from the coupled model will be compared with the traditional 

model with a quasi-steady approach. 

2.2 Governing Equations 

2.2.1 Shallow Water Equations 

The governing equations are the non-linear shallow water equations 

| + ^ + ^ = 0 (2.1) 
at ox ay 

d(uh) d(u2h) d(uvh) fd{hux) d(huy)\ TWX - rbx ,<9£ 
-—— + —£— + —r v — — + = gh— + hfv (2.2) 

at dx dy \ ox dy J p ox 

d(vh) + d(uvh) | d{v2h) _ ^ fd(hvx) | d(hvy)\ = rwy - rhy _ d£_ _ ^ ^ 

dt dx dy \ dx dy J p * dy 

where £ is the free surface elevation above the still water level hs, h is the total water depth 

(= hs + Q,u and v are the depth-averaged velocities in the x and y directions respectively, t is 

time, rwx and rwy are wind shear stresses, nx and ny are bottom friction forces, v is the viscosity, 

g is the gravity constant, and / is the Coriolis parameter. 

In order to obtain the hyperbolic formulation, the #/if| and gh^f- terms are split according to 

,d£ 1 9(C2+2^S) 
9hi = 29 dx + * g - (2A) 

M i d(e+2ths), 
dy 2 9y 

Using this splitting approach, the shallow water equations (Eqns. 2.1,2.2,2.3) can be rewritten 

as 
d£ + d(ulil + d(vh± = 0 ( 2 6 ) 

dt dx dy 
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d(uh) d(u2h + ±g{£2 + 2£hs)) d(uvh) (' d{hux) d{huy) 

dt dx dy \ dx dy 
7~ivx ^"bx 

(2.7) 

P 
g£Sox + hfv 

d(vh} djuvh) d{v2h + \g{? + 2£,hB)) _ ^ fd(hvx) d{hvy) 

dt dx dy \ dx dy 

= ^ ^ - 9tSoy - hfv 
(2.8) 

2.2.2 Sediment Conservation and Transport Equations 

Only bed load is considered in this work. There are many bed load transport rate formulas in the 

literature in which most of them relate bed load transport rate with bed shear stress. However, 

an alternative simple formula, the Grass formula (Grass 1981), which relates the bed load to flow 

velocities is often used in many sediment transport numerical models (Cao et al. 2002; Hudson 

and Sweby 2003; Hudson et al. 2005). The Grass formula has the form 

m — 1 

qsx = Au (u2 + v2) 2 (2.9) 

m— 1 

qsy = Av (u2 + v2) 2 (2.10) 

where A and m are parameters determined by the properties of the sediment. In this paper, A = 

0.001 and m — 3 are chosen which correspond to fine sand. qsx and qsy are the sediment transport 

rate in the x and y directions respectively. 

The conservation law of the sediment is described by the Exner equation (Garcia 1999) 

dz , 1 (dqsx , dqsy 

dt 1 — e0 V dx dy 

where z is the bed elevation, e0 is the sediment porosity. 
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2.3 Numerical Method of the Model 

Integrating the governing equations over the domain Q and using Green's theorem, the integral 

form of the governing equation can be written as 

Figure 2.1: Scheme of the Computational Domain 

| - !! Q dQ + I F • ndS = /Y HdQ (2.12) 

where Q is the domain of interest, S is the boundary of f2 (see Figure. 2.1), n is the outward 

surface normal vector of S, Q is the conservative variables vector, F is the flux vector, and H is 

the source term vector. The forms of Q, F, and H will be listed in the following sections. F can 

be split into viscous and inviscid flux components as follows: 

F • n = F1 - Fv = (f - uf) nx + {g1 - vgv) ny (2.13) 

where nx and ny are the Cartesian components of the normal vector (yjri*. + riy = |n|=l), and 

superscripts I and V denote invicid and viscous components respectively. 
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2.3.1 Quasi-Steady Approach 

For quasi-steady approach, the SWEs are analyzed separately from the Exner equation. Just for 

the SWEs, Q, F and H have the forms 

Q uh 

vh 

f 

f OX 

hjr 
ox 

uh 

u2h + g(e + 2(hs)/2 

uvh 

9V = 

0 

h — 

dy 

<? = 

H = 

vh 

uvh 

v2h + g(e + 2£ha)/2 

0 
T-^f^-9(S0X + hfv 

/-^^-9CSoy-hfu _ 
(2.14) 

The Exner equation is also descretized using the FVM and Green theorem as Eqn. 2.12. How­

ever, the Godunov scheme is not used here simply because the sediment transport rate is not a 

function of the bed elevation z and therefore the Jacobian matrix (only one element in this case) 

can not be evaluated. The fluxes across the cell interfaces are calculated using the variable values 

at the edges. For the Exner equation, Q, F, and H have the forms 

Q F- n 
1 

eo 
(qsxnx + qsyny) H = 0. 
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2.3.2 Coupled Approach 

For the coupled approach, the SWEs and Exner equation form an expanded system. Q, F, and H 

have the forms 

Q 

£ 

uh 

vh 

z 

f = 

uh 

u2h + g(e + 2ths)/2 

uvh 

T^QSX 

9J = 

vh 

uvh 

v2h + g(e + 2Zhs)/2 

l - e o Qsy 

f 
dy 

dy 

H 
T-^^ ~ 9iS0X + hfv 
I^-g(Soy-hfu 

(2.15) 

2.4 Evaluation of Numerical Fluxes 

The fluxes F across the interface between each two triangles are separated into inviscid and viscous 

fluxes. The numerical treatment of these two fluxes are different. For the inviscid fluxes, the one-

dimensional Riemann problem is extended to two dimensions. Analytical or approximate solvers 

of the Riemann problem can be used to evaluate the fluxes. While for the viscous fluxes, the 

evaluation of the velocity gradient is taken at the edge's center which can be used to calculate the 

viscous fluxes. 

2.4.1 Inviscid Fluxes 

The analytical solver of Riemann problem is slow comparing with the approximate solvers. Among 

many choices of approximate solvers, Roe's approach (Roe 1981; 1986) is used in this work. The 
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inter-cell inviscid flux Ff • by Roe's solver can be written as 

F j , = - [FJ(Q+.) + FJ(Q-/) - \A\ (Q+ - Q^)] (2.16) 

\A\ = R\A\L (2.17) 

where Q+ and Qfj are reconstructed Riemann state variables on the right and left sides, respec­

tively. A is the flux Jacobian matrix denned by 

d F - n 
(2.18) 

Quasi-Steady Approach 

Since the uncoupled approach will be compared with the coupled approach, the flux Jacobian of 

the two-dimensional SWEs system without the Exner equation takes the form: 

A 
d F n 

dQ 

0 nr n„ 

(c — u )nx — uvriy 2unx + vny uny 

-uvnx + (c2 — v2)ny vnx unx + 2vny 

(2.19) 

The three distinct eigenvalues of A (by hyperbolicity of the system) are 

A(1) = unx + vny, A(2) 
un + vny — c, A*3) = unx + vny + c X i uivy 

(2.20) 

while the left and right eigenvector matrices are 

R 

0 1 1 

ny u — cnx u + cnx 

—nx v — cny v + cny 

(2.21) 
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Figure 2.2: Control Volume Scheme 

L = 

- (uny — vnx) ny —nx 

unx+vnv , l -nx 

2c "+" 2 2c 

unx+vny . ]. n^ 
2c "^ 2 2c 

2c 

2c 

(2.22) 

The Riemann state variables u, v, and c on the face boundaries which are needed to calculate 

the flux are given by Roe's average as 

u+ yh^ + u vfv 
u <h+ + Vh 

v+Vh+ + v vh 
v7F + \//F c = 

g(h+ + h~) (2.23) 

and the superscripts + and — refer to the right and left side of the edge. 
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Coupled Approach 

The coupled approach needs further reformulation of the H vector in Eqn. 2.15. The slope term 

in H is split and written in matrix form as 

H 

0 

r-^^-9iSox + hfv 
Twy 7~bxi ~ g£,soy - hfu 

= 

0 

T-^y^ + ghsS0X + hfv 
T-^~^ + ghsSoy - hfu 

+ 

0 

-ghS0X 

-ghS0y 

(2.24) 

( i ) (2) 

Term (2) in Eqn. 2.24 will be moved to the left hand side of the governing equation and combined 

with the Jacobian matrix of the SWEs fluxes. The purpose of this reformulation is to get a non-

singular Jacobian matrix. This approach is also used in Hudson and Sweby (2003) and Hudson 

et al. (2005). But their governing shallow water equations are in different forms from those in this 

research. 

The invicid fluxes on the unstructured mesh for the coupled approach can not be expressed 

explicitly as for the quasi-steady approach since the 4 x 4 Jacobian matrix is far more complicated 

than the 3 x 3 Jacobian matrix of the quasi-steady approach. In this paper, an asymptotic analysis, 

instead of an analytical expression, is used to approximate the eigenvalues of the Jacobian matrix 

of the coupled approach. This is shown in the next section. 

2.5 Asymptotic Analysis of the Wave Speeds 

In order to give the asymptotic analysis of the two-dimensional system, it is necessary to consider 

the approximation for the one-dimensional system since they are closely related to each other. 
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2.5.1 One-Dimensional System 

The analysis for one-dimensional system is similar to Lyn (1987) and Lyn and Altinakar (2002). 

The general procedure of solving an algebraic equation using asymptotic approximation can be 

found in Nayfeh (1981). The Jacobian matrix for one-dimensional system has the form 

/ 

'w 
3F(Q) 

dQ 

0 1 0 \ 

—u2 + gh 2u gh 
„2 

7„K3 

K h k^ 0 

(2.25) 

where k = 3.4/ (1 — e0) > 0. The eigenvalues are the roots of the equation 

A3 - 2uX2 + X(u2 - gh- kgu2) + kgu2 = 0 (2.26) 

where k H-> 0+. Eqn. 2.26 has three distinct roots because the discriminant 

-g 
.2 \3 - 2 „ . 6 > i 4hu4 + 4g2 (h + ku2) + g (-8h2u2 + 20hku4 + k2u 

= -g [AhuA + 4g2h3 - 8gh2u2 + (l2g2h2u2 + 20ghu4) k + 0(k2 

4g2h3 (Fr2 - l)2 + (l2g2h2u2 + 20ghu4) k +0(k2) 

>o >0 

< 0 

where Fr = u/{gh). Let e = kg and A = X/u, then the characteristic Eqn. 2.26 becomes 

A3-2A2 + A 1 
Fr2 - e + e = 0 (2.27) 

The results are listed here and the details of the asymptotic analysis are in Appendix A. Since 

the regular expansion is not uniform when the flow is near critical, a change of scale is used to 

achieve an uniform expansion. When the flow is far away from critical state, i.e. 1 — 1/Fr2 ;» 0, 

19 



www.manaraa.com

the three eigenvalues are given by 

AW 

A(2) 

A(3) 

_i 1 
Fr2 J-

1 + 

1 -

+ Fr 2 ( ^ + 1) 
1 e 

Fr 2 (-Or - 1 
\ Fr 

When the flow is near critical, i.e. ( l — j ^ ) ~ (e2 J, the three eigenvalues are 

A(2) 

A(3) 

2 1 
3 + 2Fr2 

1 
^?r2 + 

1 y l-w) +8e 

1 -
Fr2 1 -

Fr^ 
+ 8e 

2.5.2 Two-Dimensional System 

For a two-dimensional system, the Jacobian matrix is 

(2 

(2 

(2 

(2 

(2 

(2 

0F(Q)-n . 
^20 = OQ = -4«x + Bny (2 

where 

4 

0 

-u2 + p/i 

-•uv 

1 

2n 

v 

0 0 ^ 

0 gh 

u 0 

of u(uHv2) (3fW) 
2kf 0 

(2 
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and 

B 

0 

-uv 

-v2 + gh 

-3k 
v(u2+v2 J 

0 

V 

0 

2kl- k 

1 

u 

2v 

L(u2+3v2) 

o 

0 

gh 

0 

(2.36) 

/ V "•" /» "'u /« '" h 

Direct calculation of the eigenvalues/vectors of matrix J2D, which is in the original global x — y 

coordinate system, is difficult. In this work, the calculation of the Roe's fluxes is done in a local 

£ — rj coordinates of each cell-to-cell interface where one of the coordinates coincides with the 

outward normal vector (see Fig. 2.3). This will simplify the calculation. The following theorem 

gives the relationship between the fluxes in the global and local coordinate systems. 

y 

X 

Figure 2.3: Local Coordinate at the Cell Interface 

Theorem 2.5.1. In the global and local coordinates shown as in Fig. 2.3, for the two-dimensional 

coupled system, suppose tlie interfacial Roe's flux defined in Eq. 2.16 are F^g and F^i respec­

tively, where each flux is a vector with 4 components. Also define the transformation matrix M 

as 

M 
cos(#) sin(0) 

. — sin(0) cos(#) , 
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Define sub-vectors Fsuhig = \Fijig(2) Fijjg(3)}T and Fsubjl = [ ^ ( 2 ) Fijii(3)]T. Then 

1- F^Q) = Fijtl(l) and Fiji9(4) = F^(4) 

2. Fsub,g = M • Fsubj 

Proof. The mass fluxes of water and sediment are invariant of the coordinate rotation. This means 

the water and sediment across the cell interface will not change under different coordinate ref­

erences. The first and fourth components of the flux vector are the mass fluxes for water and 

sediment respectively. Then, the components can be written as 

FnM) = FM and Fy,fl(4) = Fw(4) 

For the momentum fluxes of water (the second and third components of the flux vector), they 

follow the rule of rotational transformation stated below since they are two-dimensional vectors in 

the plane. 

f sub,g = •"•' " r sub,l 

• 

The alternative approach of the proof is to use the Jacobian matrixes in the global and local co­

ordinates and calculate the eigenvalues/vectores respectively. Calculation of the Roe's flux vector 

in the two coordinate systems will verify the conclusion of the theorem. However, the difficulty of 

this proof strategy is the calculation of the eigenvalues/vectors of the global Jacobian matrix. From 

the authors' experience, it is hard to find an explicit expression of eigen-system for the global Jaco­

bian. Even with some simplifications, the explicit expression is lengthy and not practically useful. 

Thus, this complication motivates the use of the coordinate transformation so that the fluxes can 

be evaluated in the local coordinates which is simple and easy to analyze. 

In the local coordinate, since n$ = 1 and nn = 0 (where n$ and n,; are the outward normal 

vector component in <!; and 7] directions), the Jacobian matrix in terms of the transformed velocity 
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vectors has the form of 

'2D,l 

—u2, + gh 

-Ut-Vr, 

1 

2u, 

u V 

0 

0 

0 

gh 

0 

V -3k?M±5± kMp± 2k^ 0 
h h h 

(2.38) 

) 

This Jacobian matrix is similar to that in Hudson and Sweby (2005) in which their analysis is 

for structured mesh. One of the eigenvalues of J2D,I is u$, while the other threes are the solution 

of the polynomial equation 

A3 - 2u^X2 + X[u\-gh- kg (3u| + v2)] + kgu^ [Su] + v2] = 0 (2.39) 

Eqn. 2.39 has three distinct roots because the discriminant is negative. 

A = g [-Ahul - 4g2 (h + k (3u| + v2)) - gu\ (-8h2 + 20hk (Suj + v2) + k2 (3«| + v2))} 

= - 9 [4/iw^ - S^w2- + 4#2/}3 + 4/1 (I2gh + 20u|) (3W2- + v2) k + 0(k2)] 

Ah {u\ -gh)2 + gh (l2gh + 20u\) {3ul + v2
v) k +0(k2) 

>o >0 

< 0 

If v,£ = 0, the three roots of Eqn. 2.39 are 0, yjgh + kgv'%, and — y/gh + kgv^. The eigen-

systems for the cases of u^ = 0 are list in Appendix A. 2. For the general case of u^ ^ 0, defining 

e = kg (3u| + v2) /u2- and A = X/u^, Eqn. 2.39 can be written as 

A3 - 2A2 + A 1 
1 

Fr2 + e = 0 

where Fr — u^/gh. This is the same as the form for one-dimensional case and the eigenvalues can 

be approximated using perturbation analysis as in Eqns. 2.28 to 2.31. In summary, the eigenvalues 
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A; and right eigenvectors R; for the two-dimensional system in the local coordinate are listed 

below. The right eigenvector matrix is 

R 

-2kvv 

—2ku*vv 

h - 2kvl 

2kvr, gh - (\{ 

—gh 

•gh\W 

-ghvr, 

> ) - ^ ) 2 gh-

-gh 

-gh\W 

-ghvn 

-(\W-ut)2 gh-

-gh 

-gh\(4) 

-ghvn 

- (A< 4 > -

and the left eigenvector matrix is 

U£ 

(2.40) 

L 

h 

a2+as AW) 
gh2bi 

a1-a2A(4)~A(2)(a2+a3A(4)) 

gh2b2 

a i _ a 2 A(3)-A( 2 ) (a 2 +a 3 A( 3 ) ) 
gh2b3 

0 

-2«e+A(3)+AW 
ghbi 

-2u;+A(2)+A(4> 
ghb2 

_2„e+A(2)+A(3) 
9hbs 

1 
h 

~2kvv(ui-\(
3'>)(uv 

gh2h 

-2fc«^(« f-A( 2))(«j-

gh2b2 

~2kvr,(uc-\<-2'>)(uv 

gh*b3 

-\M) 

4W) 

-A<3)) 

^ 1 
fcl 

fc2 

fc3 

(2.41) 

where ai = -^2+/iw|+2/cn?^; a2 = 2Jfc«^, a3 = (h - 2kv*);bi = (^2> - A^3)] ^ - A^J; 

b2 = (A^ - A<2>) ( P ) - A<4>); and 63 = (A<4> - A<2>) (A<4> - A<3>). 

The eigenvalues of the two-dimensional system can also be calculated using a numerical 

method. For comparison, the four eigenvalues from both the asymptotic approximation and the 

numerical method are plotted in Fig. 2.4 with e equal to 0.01. The figures are similar to those in 

Lyn and Altinakar (2002). Fig. 2.4(a) shows the four eigenvalues for Fr between 0.2 and 2. For 

Fr > 1.2 or Fr < 0.8, the regular expansion formula is used, while for 0.8 < Fr < 1.2, the 

re-scaled expansion formula is used. Both asymptotic approximation and numerical results are 

shown in the figure. Results from both methods are nearly identical. Major part of the error occurs 

when the flow is near critical, where the relative error is within 1%. 
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2.5.3 Viscous Fluxes 

Viscous fluxes are not evaluated via Roe's flux function. Instead, the viscous fluxes are calculated 

directly using the velocity gradient at the boundary. By Gauss's theorem, the velocity gradient term 

in the cell center can be estimated by closed line integral over the boundary of that cell (Anastasiou 

and Chan 1997). 

2.6 Limiter for High Order Schemes 

The evaluation of the Riemann states on both sides of the cell interface needs interpolation since 

all the conservative variables are stored at the cell center. This step is usually called variable 

reconstruction. The following equation is the relation between the interpolated variable at an 

arbitrary location (x, y) and the value at the cell center 

Q(x,y) = Qc + VQ-r (2.42) 

where Qc is the variable value at cell center, VQ is the gradient of Q, and r is the vector from cell 

center to (x,y). This is a piecewise linear interpolation which has second order accuracy. Second 

and higher order schemes will introduce numerical oscillations. In order to maintain monotonicity, 

non-linear limiters are introduced to eliminate oscillations in high gradient areas while keeping 

high accuracy in smooth areas. The limited version of the reconstruction equation has the form 

Q(x,y) = Qc + $(rf)VQ-T (2.43) 

where $ is a function of 77, which is the upwind ratio of consecutive gradients of the variable. For 

the structured mesh, 77 is easy to calculate because the topological relation of upwind and down­

wind is clear. For the unstructured mesh, it becomes difficult. The so-called exact r formulation 

in Darwish and Moukalled (2003) is used in this work. Fig. 2.5 shows the layout of the cells. For 
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face / , C and D are defined as the upwind and downwind cells according to the direction of the 

flow velocity. U is defined as the virtual upwind cell of C. The formulation of 77 is 

r _ (2VQC • TCD) 1 (2.44) 

where YCD is the vector connecting node C and D. After the ratio r/ is calculated, it can be used 

x 

U 

y 
Figure 2.5: Exact r Formulation of the Limiter Function 

in the limiter functions. In this paper, the MINMOD Total Variation Diminishing (TVD) scheme 

is used which has the following form 

$(77) = max(0, min(l,r/)) (2.45) 
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2.7 Time Integration 

The time integration used in the paper is similar to the method proposed by Anastasiou and Chan 

(1997). 
a(vo) n+1 r 

F? • ndS + V?H? (2.46) dt Si 

Q7+L-Q7 + T^. « 
At / d{VQ) n + l 

+ ( l - a ? 8 ' V « 
at 

(2.47) 
y4

n \ a* 

when a = 0, it becomes the Euler explicit scheme, while a = 1 results in a first order Euler 

implicit method. For the explicit scheme, the time step is restricted by the Courant-Friedrichs-

Lewy (CFL) condition. As in Yoon and Kang (2004), the following formula is used to determine 

the maximum time step allowed 

At < min ( Ri — J (2.48) 
\2max j(y/u2 +v2 + c)ijj 

where Ri is the distance between the centroids of triangle i and j . The minimum is taken for all 

the triangles in the computational domain while the maximum is take for the three neighboring 

triangles of triangle i. 

2.8 Boundary Conditions 

Boundary conditions are applied to the cell faces on the domain boundary. For the hydrodynamic 

part of the model, the boundary conditions are the same as in Anastasiou and Chan (1997) and 

Rogers et al. (2001). Those boundary conditions are briefly listed below. Sediment conditions on 

the boundary are also discussed. 
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2.8.1 Walls 

No-slip condition is applied to walls, i.e., (u, v) = (0,0). For sediment transport, the flux through 

the wall is also set to be zero which means no sediment particle will go through the solid boundary. 

2.8.2 Open Boundaries 

Conditions for the open boundaries, including inlet and outlet, are specified using the Riemann 

invariants 

( « ) « ) r n + 2 V ^ / = («,v)B-n + 2 v
/ ^ (2.49) 

where subscripts I and B refer to the interface and the boundary, respectively. 

For subcritical flow, if water depth hB is specified, then 

(u, v)B • n = 2:^ghB(u, v)i • n + 2\[ghi - 2\fghB' : , (2.50) 

and if velocity is specified, then 

[{u,v)!-n + 2jghj - (u,v)B • n]2 

tlB = -. (^-Ji) 

Sometimes, the water discharge qw = hB [(u, V)B • n] is specified. For this case, Eqn. 2.49 can be 

rewritten as 

(«,v)/•n + 2 ^ / ^ = - ^ + 2 ^ / ^ (2.52) 
tiB 

A numerical method can be used to solve hB and then (u, v)B • n = ^-. 

For the supercritical inlet, both the velocity vector and water depth should be specified. For the 

supercritical outlet, no boundary condition is needed to specify and the velocity vector and water 

depth on the boundary is the same as those in the adjacent interior. 

For the sediment transport rate, the sediment flux on the inlet is specified as the sediment feed 

rate. On the outlet, the sediment flux is set as having a zero gradient. 
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2.9 Test Problems 

In this section, the proposed numerical model is tested. The first test problem is just for the 

hydrodynamics where the bed is kept fixed. This is used to test the model capability to capture 

shocks as well as the robustness of the model for complicated flow conditions. The second test 

problem is for both the hydrodynamics and sediment transport. The flume bed is not fixed and a 

scour hole develops due to the flow. Both coupled and uncoupled approaches are used to simulate 

the process and the results are compared. 

2.9.1 Dam Break Flow in Channels with 90° Bend 

In this section, the hydrodynamics part of the model is tested against experimental observations. 

Sharp bends appear in rivers very frequently and the effects of these bends on catastrophic flooding 

waves are extremely important. Experiments for dam-break flood in a channels with a 90° bend 

were done in the laboratory of the Civil Engineering Department of the University Catholique 

de Louvain, Belgium. The details of the experiment can be found in S.Soares-Frazao and Zech 

(2002). The layout of the experiment is shown in Fig. 2.6. The channel bed is 0.33 m above the 

reservoir bed. The initial water surface level in the reservoir is 0.25 m above the channel bottom 

while the channel bed is initially dry. The dam-break flood wave is generated by a sudden release 

of the control gate. S.Soares-Frazao and Zech (2002) also developed a two-dimensional numerical 

model to capture the flood wave. Good agreement of results between the experiment and numerical 

model has been reported. 

One of the most important factors which affect the extent of damage by dam-break floods is the 

shock front and free water surface. In Fig. 2.7, the modeled free water surface elevation contours 

at time t = 3 s, 5 s, 7 s, and 14 s are plotted. At t = 3 s, the flood wave has just reached the bend 

which agrees with the experiment. The bend has at least two effects on the flood wave. One is 

the reflection traveling upstream to the reservoir. The other effect is the reflection wave on the 

downstream portion of the channel which can be seen in Fig. 2.7(d). 
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Figure 2.6: Layout of the Dam Break Experiment in Channels with 90° Bend 
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The modeled profiles of the water surface around the bend at different times are plotted in Fig. 

2.8. The numerical results from S.Soares-Frazao and Zech (2002) are also plotted. The results 

from both numerical models agree well with the experiment. From this figure, it is clear that 

the upstream traveling reflection bore reaches the reservoir at around t = 14 s and after that the 

water level recedes. The results from this test case show the capability of the model to capture the 

complicated flow process and it is the basis of the coupled model simulation. 

2.9.2 Scour Around the Spur Dike During a Surge Pass 

The test case for the coupled model is the scour around a spur dike experiment from Mioduszewski 

and Maeno (2003). The experiment was done in a laboratory flume at Okayama University, Japan. 

Fig. 2.9(a) shows the plane view of the flume. The flume is 15 m long, 0.6 m wide, and 0.4 m deep. 

The sand has d50 = 1.28 mm. The spur dike is not submerged. It is 6 cm thick and 15 cm wide. 

Case 1 of the experiment is chosen for comparison. The water discharge was set to the value of Q 

= 0.005 m3/s. The initial water depth is 20 cm and a surge wave is generated by opening the gate 

at the downstream end of the flume at t = 0 s. The unstructured mesh for this test case is shown 

in Fig. 2.9(b). The mesh around the spur dike is refined in order to capture the scour details. The 

experiment also investigated the pore pressure in the sand due the pass of the surge wave. This 

is also very important since the flow field and pressure distribution inside the sand will affect the 

stability of the dike structure and scour process around it (Liu and Garcia 2007a). However, the 

pore pressure in the sand is beyond the scope of this paper and therefore it is not considered. 

The velocity field around the spur dike at t = 20 s is plotted in Fig. 2.10. A recirculation zone 

is formed behind the spur dike. Also because of the blocking effect of the dike, the flow velocity 

is higher around the tip area. These flow characteristics are the cause of the sediment movement 

and will affect the scour pattern. The free water surface around the spur dike at t = 20 s is plotted 

in Fig. 2.11. Water elevation is higher in front of the spur dike and lower behind it. 

In Fig. 2.12, the final scour patterns from the experiments, the quasi-steady simulation, and 

the coupled approach simulation are shown. The basic scour pattern from the experiment is that 
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1 m/s 

Figure 2.10: Velocity Field around the Spur Dike at t = 20 s 

Figure 2.11: Water Surface around the Spur Dike 
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the sediment is scoured away from the tip of the spur dike and deposited on the back of it. From 

the comparison, the coupled approach gives a more accurate result than that from the quasi-steady 

approach. For the coupled approach, the maximum scour is about 8 mm and is located at the 

upstream tip of the spur dike. This agrees with the experiment. For the quasi-steady approach, 

the maximum scour is about 6 mm, which is a little less than the experiment. The deposition 

behind the spur dike comes from the sediment scoured away upstream and it is retained there 

by the recirculation zone. The maximum deposition height is about 3 mm which is captured by 

both approaches. The locations of the maximum deposition for both approaches are a little further 

downstream when compared to the experiment. The reason could be that both approaches are 

two-dimensional models and the three-dimensional phenomena are not captured (such as horse 

shoe vortex, non-hydrostatic pressure distribution, etc.). In order to give more accurate results, 

three-dimensional scour model with a free water surface should be used (Liu and Garcia 2006a). 

The asymptotic analysis of the eigenvalues not only gives an insight on the functional rela­

tionship between the wave speeds and control parameters, such as Fr and sediment properties, 

but it also increases the efficiency of the numerical model and reduces simulation time. Other 

than asymptotic analysis, numerical iteration can be used to evaluate the eigenvalues. However, 

numerical evaluation is slower comparing with asymptotic analysis. For numerical eigenvalue 

evaluation, the computational cost is 25n3, where n is the dimension of the Jacobian matrix (Heath 

1996). While for asymptotic approximation, since all eigenvalues and eigenvectors are explicitly 

expressed, the computational cost is only a function of n2. In order to demonstrate the efficiency 

of the asymptotic approximation method, the test problem is run for different mesh sizes with both 

numerical eigenvalue evaluation and asymptotic approximation. For numerical eigenvalue eval­

uation, the numerical routine DGEEV for general non-symmetric matrix in LAPACK (Anderson 

et al. 1999) is used. For this test case, four different mesh sizes (2541, 1306, 915 and 670 triangles) 

are used for both methods. For the same mesh size, the simulation results are the same. But the 

computation time by asymptotic approximation method is far less than the numerical eigenvalue 

evaluation method. The computational time on a computer with Intel Pentium 4, 3.2GHz CPU, 
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Figure 2.12: Scour around the Spur Dike: (a) Experiment (b) Quasi-Steady Approach (c) Coupled 
Approach 
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and 4G RAM is listed in Table 1. For all the four mesh sizes, the ratio between the simulation times 

by numerical method (Tn) and asymptotic method (Ta) is about the same (2.7 in this case). The 

reason for the similarity is due to the fact that the majority of the computational time is spent on 

the calculation of the eigen-system. For both methods, the computational cost of the eigen-system 

is a linear function of the mesh size. Therefore the total computational time of the model is also a 

linear function of the mesh size. The ratio Tn/Ta slightly increases with the increase of the mesh 

size. This means for larger cases, the asymptotic method is even more efficient. In conclusion, the 

proposed asymptotic method reduced the computational time by about 64% (this number might 

vary depending on the test case and model implementation), making this an attractive alternative 

to previous methods. 

Table 2.1: Computational Time by Different Eigenvalue Evaluation Methods (Unit: s) 

Mesh Size 

2541 

1306 

915 

670 

Time Step (s) 

0.002 

0.002 

0.002 

0.01 

Computational Time 

Asymptotic Ta 

1497 

759 

525 

79 

Numerical Tn 

4179 

2069 

1430 

207 

Ratio Tn/Ta 

2.79 

2.73 

2.72 

2.62 

2.10 Discussion and Conclusions 

The coupled model of 2D SWEs and sediment transport on unstructured mesh can be implemented 

for scour problems on complex domains. It is recognized by many authors that when the scour 

process is rapid (such as scour caused by dam/dike break, surge waves, etc.), the coupled model 

approach is needed. When the scour process is slow (such as long term aggradation/degradation 

of natural rivers), both the usual quasi-steady approach and the coupled approach can give good 

results (Hudson and Sweby 2003; Hudson et al. 2005; Cao et al. 2002). However, as pointed out by 

Cao et al. (2002), the numerical stability of the quasi-steady approach will present a difficulty. High 

order discretization of the Exner equation may lead to non-physical oscillations which could be 

38 



www.manaraa.com

incorrectly interpreted as ripples and sand waves. Low order discretization of the Exner equation 

may under-estimate the amplitude of the real sand wave or even smear it out. The hyperbolic nature 

of the Exner equation (even though there is dispersion effect in the equation) makes it possible to 

couple it with SWEs and to use Godunov schemes. The coupled model with the higher order 

Godunov scheme proposed in this paper can capture the real wave accurately while control the 

growth of non-physical oscillations. 

The asymptotic analysis gives insight into the wave speed structure and helps to construct an 

explicit expression for the Roe's flux. It also gives a fast and accurate evaluation of the eigenval­

ues/vectors. Comparing to the numerical iteration method for the eigen-system, the asymptotic 

approximation is far more efficient. For the test case used in this paper, the average computational 

time can be reduced by around 64%. This efficiency could be very important when the numerical 

model proposed in this paper is applied for real cases where people's lives and property are in 

danger. 

The interpolation method of the TVD scheme used in current numerical model for the upwind 

ratio of consecutive gradients is based on the virtual upwind node. The basic assumption is the 

gradient from upwind node to downwind node is the same as that from center node to downwind 

node. This assumption simplifies the calculation and reduces the computational stencil. Future 

research is needed on the comparison of different interpolation methods and TVD schemes. 
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Chapter 3 

Three Dimensional Simulation of Local 
Scour with Free Water Surface and Mesh 
Deformation 

3.1 Introduction 

Local scour problems have been studied for many years both experimentally and numerically. In 

this paper, a new numerical model is proposed to simulate the scour process in the presence of 

a free surface and allowing for automatic mesh deformation. In the scour problem, there are at 

least two sharp interfaces: water-air and water-sediment. In this work, these two interfaces are 

captured using different methods. The water-air interface is captured with an Eulerian method, 

namely volume of fluid (VOF) method. The water-sediment interface behavior is captured with a 

Lagrangian method, namely moving-mesh method (Liu and Garcia 2006a). 

In numerical simulations of open channel flow, free water surface is usually replaced by a 

rigid lid. This is valid only if the free surface does not change too much along the channel. For 

rapidly changing water surface (e.g., hydraulic jump), the rigid lid approximation will introduce 

nonphysical errors. There are many surface tracking or capturing methods available to simulate 

the free surface, e.g., marker and cell (MAC) method, volume of fluid (VOF) method, level set 

method (LSM). MAC method is based on a Lagrangian approach and a set of marker particles 

whose position at any time step are used to reconstruct the interface. VOF method is based on 

the Eulerian point of view instead. The widely used VOF method was first proposed by Hirt and 

Nicholls (1981) which used a donor-acceptor formulation. VOF method has been used by several 

"This chapter, as a manuscript, has been accepted for publication in Journal of Waterway, Port, Coast and Ocean 
Engineering, ASCE 
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researchers to capture the free water surface when the scour process is investigated. Among many 

others, Richardson and Panchang (1998) used commercial code Flow — 3D®, which implemented 

the VOF method on structured mesh, to simulate the flow field around the scour holes. The flow 

field compared well with the experiments and the particle tracking in the resulting free surface 

flow field revealed some of the characteristics of the scour process. Level set method divides the 

domain into grid points which hold the value of level set function (Sethian 1996). The contour of 

zero level set gives the interface. Level set method has a more rigorous mathematical basis and it 

is easier to calculate the curvature on the surface which is important for the surface tension force. 

In this work, a high resolution VOF method proposed by Ubbink and Issa (1999) is chosen to track 

the free surface. The CICSAM (Compressive Interface Capturing Scheme for Arbitrary Meshes) 

scheme treat the whole domain as the mixture of two liquids. Volume fraction of each liquid is 

used as the weighting factor to get the mixture properties, such as density and viscosity. 

In the scour problem, the bed deformation needs to be coupled with the transient flow field. 

Br0rs (1999) used a structured grid to model the scour under pipelines. The grid on the bed and 

the corresponding grids above were moved according to bed elevation changes. This method for 

structured grids is similar to manually moving each grid point at each time step and is not efficient. 

Another alternative is to use the so called blocking method. The downside of the method is that 

the accuracy depends on the mesh size around the interface. 

In unstructured grids, it is more complicated to move the grid points on the bed and in the 

domain. Arbitrary movement of the points may invalidate the grid. Herein, an automatic grid 

movement algorithm is used to avoid these problems. There are many mesh deformation meth­

ods developed in the past years, such as spring analogy and Laplacian operator smoothing. The 

latter is chosen in this work because it is more robust and easy to implement in unstructured grid 

for complex domain. The Laplacian operator smoothing method is used here to solve the Lapla­

cian equation with the deformation condition at the boundary. With this approach, the inner grid 

deforms smoothly and the computations are stable. 

41 



www.manaraa.com

3.2 Governing Equations 

3.2.1 Fluid Flow Model 

The governing equations for the fluid flow are the Reynolds-averaged Navier-Stokes equations: 

V-u = 0 (3.1) 

^ + V- (puu ) -V- ( (M + /it)S) = -Vp + pg + aK^- (3.2) 
at |Va| 

where u is the velocity vector field, p is the pressure field, pt is the turbulent eddy viscosity,a is 

the volume fraction function for the two fluids defined by 

0 volume occupied by air 
a = < (3.3) 

1 volume occupied by water 

S is the strain rate tensor defined by S = ^(Vu + Vu r) . a is surface tension, K is the surface cur­

vature. Surface tension is not so important in the scour problem but it is included for completeness. 

The density p and viscosity p in the domain are given by 

p = apx + (1 - a)p2 (3.4) 

p = ap,\ + (1 — a)p2 (3.5) 

The volume fraction a is transported by the fluid velocity field. The equation for the volume 

fraction scalar a is 

^ + V • (u«) = 0 (3.6) 
at 

Numerical diffusion will spread out the sharp interface between water and air. A compressive 

interface capturing scheme is used to resharpen the interface. Details about the present free surface 

modeling algorithm and CICSAM scheme can be found in Ubbink and Issa (1999). 
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Table 3.1: Constants ink — t Model 
C/i C l C2 CTfe ^e 

0.09 1.44 1.92 1.0 1.3 

3.2.2 Turbulence Model 

Turbulence in the fluid flow model is estimated by the conventional k-e two-equation model (Rodi 

1993) 

k2 

IM = Cpp— (3.7) 
e 

(ufc) = Iv(—V£:) + 2 ^ | V u | 2 - e (3.8) 

(Ue) = I V ( ^ V e ) + 2 ^ | V u | 2 f - C 2 ^ (3.9) 
p ae p k k 

where. A; is the turbulent ̂ kinetic, energy and e is the turbulent energy dissipation rate. The constants 

in Eqs. 3.7, 3.8 and 3.9 take the values given in Table 3.1. 

For wave driven orbital motion, the two equation turbulence models (such as k — e model) will 

become unstable under some conditions. From the authors' experience, when the wave is strong or 

the wave is breaking, instabilities will be observed. Mayer and Madsen (2000) carried out analyt­

ical stability analysis to investigate the erroneous behavior of the turbulence model (k — u model 

in their case) under waves. It turns out that the turbulent eddy viscosity will grow unbounded and 

therefore make the model unstable. It seems that no general purpose turbulence model has been 

developed especially for unsteady wave driven flows. Most models rely on the tuning of empirical 

parameters. For the numerical code used in this research, the values of turbulence parameters are 

bounded when they grow out of range (e.g., k and e become negative). Fortunately, for all the 

test cases considered in this work, instability of the turbulence model did not arise. The mod­

ified two-equation turbulence model for wave flows proposed by Mayer and Madsen (2000) or 

other modified models can be used when the wave is strong or even breaking and instabilities are 

expected. 

dk 
dt 
De 
dt 

+ V 

+ V 
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3.2.3 Sediment Transport Model 

The scour problem is caused by the erosion movement of sediment. In this numerical model, both 

bed load and suspended load are considered. Exner equation is used to update the bed elevation 

(Garcia 1999). 

Bed Load Transport 

There are many bed load transport rate formulas in the literature. Most of them relate bed load 

transport rate with shear stress. The formula of Engelund and Freds0e (1976) is chosen for the 

current model 

18.74(9 - ec) 0i/2 _ 0 . 7 ^ i f 0 > 0 c 

(3.10) 
0 otherwise 

where q* is a dimensionless bed load transport rate known as the Einstein number which is given 

by" '" ' " ' " ' " ' " ' " ' ! ' 
<7o 

y/Rgdd 

Here q0 is the bed load transport rate for flat bed. 0 and 6C are the Shields number and the critical 

Shields number for initiation of motion respectively, where 6 is defined as: 

0 n 

pgRd 

Here n is the bed shear stress calculated with the fluid flow model, p is the density of water, g is 

the gravitational acceleration, R is the submerged specific gravity of sediment(=l .65 for quartz) 

and d is the sediment grain diameter. 

The critical Shields number for particular sediment is given for flat bed and should be adjusted 

according to the local slope of the bed and local shear force direction. The critical Shields number 

for a flat bed, 9c0, is a function of flow intensity and sediment properties. 6c0 is given as a constant 

in most numerical models. The approach used here to account for the slope effect is similar to that 
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used by Roulund et al. (2005). It considered the slope effect and followed the approach suggested 

by Engelund and Freds0e (1976) to use the flow velocity at the particle position and the steepest 

slope to adjust the critical Shields number. In this research, the shear stress vector, instead of 

velocity near the bed, is used. Fig. 3.1 shows the scheme employed for the adjustment of the bed 

shear stress, where n is the surface normal vector, R is the steepest-slope unit vector, and r is the 

wall shear stress vector acting on the bed. The critical Shields number is adjusted according to 

8c = dcQ cos/3Wl 
sin2 cj)tan2,0 cos<f)sin(3 

K tJ>s 
(3.11) 

where <f> is the angle between the velocity vector and the bed steepest slope direction, Q is the slope 

angle of the bed. \is is the static friction coefficient and has the value of 0.63 for this work. From 

Eq. 3.11, when the wall shear stress tries to move sediment up slope, the critical Shields number 

6C increases, and vice versa. 

Figure 3.1: Slope Effect on Sediment Transport 

Eq. 3.10 only gives the total bed load. The bed load transport rates in different directions are 

given by 
T: fin 

(3.12) " = * H ' c | * b , = 1 , 2 

where r/ is the bed elevation, C is a constant in the range of 1.5-2.3 which is used to reflect the 

slope effect on the sediment flux (Br0rs 1999). 
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Suspended Load 

The governing equation for suspended load is a standard convection diffusion equation. Sediment 

must be fine enough to ignore the inertial effect of the particle. 

§ + V- (u-vs^-)c = V-(^Vc) (3.13) 

Here c is the sediment concentration, u is fluid velocity vector, vs is sediment fall velocity. ut is 

the diffusivity which is taken as the same value as turbulence eddy viscosity. 

Bed Morphology Model—Exner Equation 

Bed elevation changes are based on the continuity of sediment. The Exner equation, which de­

scribes the sediment continuity, is 

^ = ^—{-V-qb + D-E] (3.14) 
at n — 1 

where r\ is the bed elevation, n is the porosity of the bed, qb is the bed load transport rate vector 

whose components are given by Eq. 3.12. D is the deposition rate and E is the entrainment rate. 

The deposition rate D at the bed is 

D = v8Cb (3.15) 

where Q, is the sediment concentration very near the bed. In the current model, the concentration 

at the nearest cell center is used. The entrainment rate E, unlike the deposition rate D, needs some 

empirical model. E can be written in dimensionless form as 

~ E 
E = — (3.16) 

Vs 

Many models are available in the literature for estimating the entrainment rate of sediment into 

suspension E. Garcia and Parker (1991) performed a detailed comparison of eight such relations 
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Table 3.2: Sediment Entrainment Models 

Authors 

Garcia and Parker (1991) 

van Rijn (1984) 

Smith and McLean (1977) 

Model 

E = 

E = 

E = 

AZl 

1 + 5 1 5 ^ 

U - U i 0 ZbD^ 

0.6570(£-l) 

Parameters 

A = 1.3 x 10~7 Zu = ^R%6 

D* = (feo 
. 9 I1 . 

1 / 3
 T , fl 

Zb = 0.05H 

7o = 2.4 x 1CT3 

- 1 ) 

against data. Three of the many existing sediment entrainment models are listed in Table 3.2. The 

entrainment rate is given at some reference level Zj, very near the bed to avoid singularity. The 

reference level in Garcia and Parker (1991) is five percent of the water depth from bed while in 

Smith and McLean (1977), the reference level is defined as 

Zb = 26.3 [j-l)d + ks (3.17) 

where ks is the equivalent roughness height of die bed. 

All of these three empirical models in Table 3.2 all perform well against data (Garcia and Parker 

1991). In this work, the model in van Rijn (1984) is used. Some simpler models for E also exist in 

the literature. Br0rs (1999) and Liang et al. (2005) used the concept of turbulence diffusivity and 

set the vertical sediment entrainment flux as E -

model while still give reasonable results. 

ot^§-. This formula will simplify the numerical 

3.2.4 Mesh Deformation Solver—Laplacian Equations 

As mentioned before, the automatic mesh deformation is implemented by a Laplacian smooth 

operator. Governing equations for the mesh motion equation is the Laplacian equation (.Tasak and 
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Tukovic 2007). Let v be the grid motion velocity field, then the equation becomes 

V-(7Vv) = 0 (3.18) 

where 7 is the diffusion coefficient chosen to control the mesh motion. 7 can be a constant or 

a variable defined by other properties in the domain. The selection of variable 7 depends on the 

specific mesh motion problem and needs objective judgment. Jasak and Tukovic (2007) suggested 

several possibilities to set the 7 value based on distance (linear, quadratic and exponential) from 

some boundary or mesh characteristics (orthogonality and skewness). These methods all have their 

merits and shortcomings. In this work, 7 is set as a non-zero constant for simplicity. The boundary 

condition for Eq. 3.18 is given by the Exner equation. After each time step of bed elevation change, 

the bed grid motion velocity is known. When the grid motion velocity field is solved, the grids in 

the whole domain can be moved based on the following equation 

xfc+i = xfc + v A t ( 3 > 1 9 ) 

Here, xk+1 and xk are grid position vectors at time level k + 1 and k respectively, and At is the 

time step. 

Fig. 3.2 is a simple test case for the mesh deformation component of the numerical model. The 

bottom of a rectangular flume (with unstructured grid) is "vibrating" in a sinusoidal mode with a 

period T = 0.8 s. Mesh grids at t = 0, T/4, T/2 and 3T/4 are shown. In real cases, the bed will 

move in a more complicated way. 

3.3 Numerical Simulation Schemes and Procedures 

The governing equations presented in the previous section form a strongly coupled system of 

equations. The solution of this system of equations needs some effort because even for each 

single component (fluid, free surface or sediment) is a difficult problem. Also the time scales of 
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1=0 t=0.2 

t=0.6 

Figure 3.2: Mesh Deformation of Vibrating Flume Bottom 
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the flow field and sediment transport are so largely different that the whole system is very stiff. 

Consequently, numerical instabilities can be expected to arise. The emphasis of this research is 

not on the numerical details but on building a numerical model for the local scour problem and 

verification of the numerical solution of the model. So numerical schemes for each component 

of this system are described only briefly. Several references about these numerical schemes are 

provided for the interested readers. 

The code used in this work is an open source computational fluid dynamics (CFD) code named 

OpenFOAM (OpenCFD 2006). It is freely available through internet. OpenFOAM is primarily 

designed for problems in continuum mechanics. It uses the tensorial approach and object ori­

ented techniques (Weller et al. 1998). OpenFOAM provides a fundamental platform to write new 

solvers for different problems as long as the problem can be written in tensorial partial differential 

equation form. Here, the flow field is solved by the adaption of the original turbulence solver for 

incompressible fluid. The sediment transport equation and bed deformation are added to the fluid 

flow solver to form a new solver called FOAMSCOUR. The core of this code is the finite volume 

discretization of the governing equations. Almost all kinds of differential operators possible in a 

partial differential equation, such as temporal derivative, divergence, laplacian operator, curl, etc, 

can be discretized in the code. The finite volume details of the code can be found in Jasak (1996). 

The next section is a brief introduction of the numerical scheme used in FOAMSCOUR. 

3.3.1 Numerical Scheme for the Flow Field 

The numerical solution of the Navier-Stokes equation for incompressible fluid flow imposes two 

main problems (Jasak 1996): the nonlinearity of the momentum equation and the pressure-velocity 

coupling. For the first problem, two common methods can be used to deal with it. The first is to 

solve a nonlinear algebraic system after the discretization. This will need a lot of computational 

effort. The other is to linearize the convection term in the momentum equation by using the fluid 

velocity in previous time steps which satisfies the divergence-free condition. The latter method 

is used in this research. For pressure-velocity coupling, many schemes exist, such as the semi-
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implicit method for pressure linked equation (SIMPLE) (Patankar 1981) and pressure implicit 

splitting of operators (PISO) (Issa 1986). PISO scheme is used in this code. For the k —e turbulence 

model equations, although k and e equations are coupled together, they are solved by a segregated 

approach, which means they are solved one at a time. This is also the usual approach used in most 

CFD codes. 

For the free surface, CICSAM scheme is easy to code and captures the free surface fairly well. 

But the problem with this scheme is that it is very slow. The time step required is so small that 

the computation usually takes a very long time even for a small computational domain. This is 

partially caused by the fact that the control cell which has the largest Courant number usually is 

in the air phase. In our case, the two phases are water and air. The density of water is almost 

1000 times larger than that of air and the velocity magnitude in the air phase is far greater than 

in the water phase. A modified approach is proposed in this work analog to those used in other 

CFD codes. The aim is to relax the time step requirement while capturing the free surface. In the 

modified approach, the volume occupied by the air phase can be called void. In the void region, 

the velocity is set to zero and the pressure is set to atmospheric pressure. This will not upset the 

computations because of the large density ratio between water and air. The inertia force associated 

with air can thus be neglected. The threshold value of a for the void (i.e., below what value 

of a, it can be viewed as void) needs some consideration. The classical dam break problem is 

carried out to investigate the effect of the threshold value. As in Fig. 3.3(a), a column of water 

is released at time t = 0 s and an obstacle is located in front of the water column. Fig. 3.3 shows 

the contour of the VOF scalar a which is the volume fraction of water. The results at t = 0.3 s for 

different threshold values (0.01 and 0.1) are plotted together with the original scheme (threshold 

value equals 0). The result from threshold value 0.01 is very close to the original scheme while that 

from threshold value 0.1 causes more damping of the water flow. This is because high threshold 

values imply that a larger portion of the flow field is set to zero velocity and the water needs to 

consume more energy to go through such area. In this work, a threshold value 0.01 is used for all 

computations and the computational time is reduced by almost half. 
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Figure 3.3: Test Cases for Modified CICSM Scheme (a) Initial state (b) Critical a = 0 (c) Critical 
a = 0.01(d) Critical a = 0.1 
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3.3.2 Numerical Scheme for the Sediment Transport 

The bed load and suspended load in the sediment transport modules are solved separately. Since 

the shear stress on the bottom is obtained from the flow solver, using Eq. 3.10 to calculate the bed 

load is straightforward. The suspended load equation (Eq. 3.13) is a convection-diffusion equation 

and the sediment is transported passively by the flow field. Finite volume method is also used to 

solve this equation. 

After the sediment load (namely bed load and suspended load) is calculated, the Exner equation 

is solved to change the bed elevation. Exner equation is a 2D equation although the bed is in 

3D space. This is because the vertical coordinate z is the variable to be solved and it is not an 

independent variable any more. The bed elevation change is due to the divergence of sediment 

transport flux together with erosion and deposition of sediment on the bed surface. This simple 

2D equation can usually be solved by the finite difference method using a structured grid when 

the bottom has a regular shape (Beek and Wind 1990; Olsen and Melaaen 1993; Br0rs 1999; 

Olsen and Melaaen 1999). For complex domains, such as a natural river bottom or in the presence 

of objects (bridge piers, break water etc.), a finite volume or finite element method can be used 

with unstructured grids. In this research, two meshes are used. One is for the fluid flow solver 

and the other is for the bottom Exner equation. The Exner equation is solved on the 2D mesh 

using finite volume method. In Fig. 3.4, it is shown that the coupled problem is solved through 

mapping between the fluid mesh bottom boundary and sediment 2D mesh. After the flow solver 

and turbulence solver are finished, the shear stress and other parameters are available. Those flow 

parameters are mapped from the 3D fluid bottom boundary to the 2D bed sediment mesh. On the 

2D sediment mesh, the Exner equation is solved and the new bed elevation is calculated. Then 

the bed elevation is mapped back from 2D sediment mesh to 3D fluid mesh. The 3D fluid mesh 

is deformed according to this as a boundary condition. The use of separate meshes for the flow 

field and the Exner equation keeps the concept clear and easy to manage in the code. Mapping 

back and forth between these two meshes could lead to loss of some accuracy when averaging and 

53 



www.manaraa.com

interpolation are needed. But when the mesh is sufficiently fine or the mapping is almost one to 

one, accuracy is not a problem. 

Figure 3.4: Mapping between 3D and 2D Bed Mesh 

3.3.3 Numerical Scheme for Automatic Mesh Deformation 

The Laplacian equation in Eq. 3.18 needs to be solved on the 3D mesh to get the movement 

of each node. Finite element method (FEM, which is implemented in the original OpenFOAM 

package), the finite volume method as well as other numerical methods can be used. In the original 

OpenFOAM package, each cell of the 3D mesh is decomposed into tetrahedral elements and the 

new refined mesh is used to solve the Laplacian equation. The details of the FEM implementation 

can be found in OpenCFD (2006) and Jasak and Tukovic (2007). This built-in FEM method is very 

slow especially when the 3D mesh is very big. Numerical tests show that the decomposition time 

is almost half that of total mesh motion solution step. Also the decomposition makes the new mesh 

much larger (usually several times the original mesh size) and therefore makes the computation 

even longer. In this work, some simplifications are made according to the unique character of the 

problem under consideration. For the scour problem in this work, the specific characteristic is that 

the sand bed boundary movement is in the vertical direction (deposition or erosion). This makes 
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the problem relatively simpler. A new finite volume solver for the Laplacian equation is written 

and it is used on the 3D fluid mesh. No mesh decomposition is used and the mesh movement is 

solved at the cell centers. After those center values are obtained, they are interpolated to the grid 

points to perform the actual mesh motion. 

3.3.4 Boundary Conditions 

There are basically five boundary types of the domain: inlet, outlet, atmosphere, walls and sand 

bed. For sediment transport, the boundary conditions for suspended sediment concentration and 

bed load feeding rate also need to be specified. 

Inlet and Outlet 

For the inlet, velocity is specified. Pressure is set to be zero normal gradient dp/dn — 0 to be 

consistent with velocity condition. Turbulence quantities such as A; and e are also set as constant 

(5% turbulence intensity is used to set the turbulence level). The outlet condition is chosen as zero 

gradient for all quantities except for the pressure. At the outlet, the dynamic pressure Pdynamic = 

\/2pu2, instead of total pressure (Ptotai), is specified as zero normal gradient. The hydrostatic 

pressure Pstatic is subtracted from the total pressure. This makes it easy to specify the pressure 

boundary condition since the free surface will change and the hydrostatic pressure will also change 

at the outlet. The details of the outlet free surface condition can be found in OpenCFD (2006). 

Atmosphere 

The top boundary of the domain is the atmosphere and the total pressure is set to zero, k and e 

at the top boundary will depend on the flow direction relative to the boundary. When the flow is 

going out of the domain, then zero gradient condition is used. When the flow is going into the 

domain, a 1% turbulence intensity is used to specify k and e. The small amount of air turbulence 

will not affect the water flow field too much since the water is much heavier than air. 
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Walls and Sand Bed 

At the surfaces of objects (such as pile, sluice gate and flume walls), wall boundary conditions are 

used. No-slip condition u = 0 is set for velocity with zero normal gradient for pressure. For the 

turbulence quantities, it will depend on the smoothness/roughness of the wall. For smooth walls, 

the value of turbulent kinetic energy k has to be specified, while for rough and transitional cases, 

normal gradient of k is set equal to zero . For the test cases in this work, the walls are all rough and 

zero normal gradient condition is used for k. Test cases using zero normal gradient k condition 

give numerical results which are in better agreement with experiments (Roulund et al. 2005). The 

bed boundary is almost the same as the walls. One exception is that the vertical velocity is set 

to be the same as the bed elevation change velocity. This adjustment is particularly important in 

the early stages of scour and the scour rate is very high. In the later stages, the scour is almost at 

equilibrium and the vertical velocity of the movable bed is very small compared to that of the flow 

field. At this stage, it is reasonable to set the bed fluid velocity equal to zero. 

Sediment Boundary Conditions 

At the inlet, the suspended sediment concentration c is set to zero which corresponds to clear water 

coming into the domain. At the outlet, zero gradient is applied for c. At the atmosphere boundary, 

c is set to zero since no sediment particle will go through the water surface. For the solid walls, 

the flux of sediment through these surfaces is zero. The flux of suspended sediment qs (including 

convective and diffusive fluxes) is defined as 

q, = (u - vs-^) c - utVc (3.20) 

So the condition for zero flux of suspended sediment through the wall is expressed as 

qs n = 0 (3.21) 
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At the sand bed, the suspended sediment flux is specified as the net upward normal flux 

qs • n - E - D (3.22) 

where D is defined in Eq. 3.15 and E is calculated by using the empirical model by van Rijn 

(1984) as shown in Table 3.2. 

Bed load boundary conditions are defined similarly. At the inlet, bed load is set to be zero 

which corresponds to zero feeding rate because of the concrete bed before flow hits the sand bed 

(see the test case section). At the outlet, zero gradient is applied. At the wall surfaces, the bed load 

flux is set to zero as for suspended load, i.e. 

qb • n = 0 (3.23) 

3.3.5 Simulation Flow Chart 

The flow chart for the simulation process is plotted in Fig. 3.5. A quasi-steady approach is used 

in the model. In this approach, it is assumed the time scale of bed change is far larger than that 

of flow field and the time steps for flow field and morphological calculations are different. When 

the flow field is being calculated, the domain boundaries are fixed. Only at the sediment transport 

step, the domain boundaries are adjusted. A scheme similar to the method proposed by Liang et al. 

(2005) is used here. During the simulation, m time steps of flow field simulation are carried out 

between the morphological steps. This approximation is only valid when the bed changes are very 

slow when compared to the flow changes. Through numerical experiments, it is found that at the 

beginning of the local scour process, the bed changes very rapidly and most of the scour occurs 

in this stage. In order to increase the accuracy, smaller values of m are used at the beginning of 

the simulation. After the flow field and bed change reach relatively steady state, bigger values of 

m can be used to accelerate the computation. In the test cases considered here, m = 1 is used 

at the initial stage of simulation and m gradually increases to 100 when the whole system tends 

57 



www.manaraa.com

to equilibrium. There are some differences between the current time marching scheme and the 

one in Liang et al. (2005). Liang et al. (2005) only use k, where k < m, time steps between 

morphological steps and assume that from time step k + 1 to m, the flow field does not change 

much. The flow field from time step k is used to perform the morphological calculation. This will 

further reduce the computational time. 
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Figure 3.5: Flow Chart of Computational Scheme 

3.4 Model Verification and Applications 

In this section, applications of turbulent wall jet scour (2D case) and wave scour around a large 

vertical circular cylinder (3D case) are carried out using FOAMSCOUR and the numerical results 

are compared with experiments. In turbulent wall jet scour process, the jet flow and momentum 

diffusion are of interest as both have an impact on the scour hole development. In wave scour 

around a large pile, the water wave and its interaction with the pile and bed sediment are impor­

tant. The coupled problems of flow field and morphodynamics usually take a very long time for 

computation. Parallel computation with domain decomposition is used to accelerate the process. 

OpenFOAM comes with parallel computing support and FOAMSCOUR easily uses these mod-
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ules to implement both flow field solver and sediment transport solver. All computations were 

done on the National Center for Supercomputing Applications (NCSA) Tungsten Xeon Cluster at 

the University of Illinois at Urbana-Champaign. 

3.4.1 Wall Jet Scour Test Case 

The experimental data of turbulent wall jet scour by Chatterjee and Ghosh (1980) and Chatterjee 

et al. (1994) are used. This experiment investigated the flow field and sediment transport due to a 

submerged wall jet. The schematic view of the experiment is shown in Fig. 3.6. The jet is formed 

by a small opening under a sluice gate and flows over a rigid apron onto an erodible bed. The 

details of the experiment can be found in the original papers. Run2 of the experiment is chosen as 

a typical run to be simulated. The bed material is sand with d50 = 0.76 mm, submerged specific 

gravity 1.65, porosity 0.43 and angle of repose 29 degrees. The flow condition for this run is 

as follows. The apron length is 0.66 m and the jet inlet velocity is 1.56 m/s. The downstream 

water depth is controlled to be 0.291 m by the outlet weir. In the experiment, the jet inlet velocity 

is caused by the difference between upstream and downstream water depth. The corresponding 

water depth difference in Run2 is 0.118 m. But in this simulation, the conditions upstream of the 

sluice gate are not modeled. Equivalently, velocity is specified at the jet inlet. Although the test 

case is 3D, the flume side walls have little effect on the main region of the flow and the scour 

profile is almost uniform in the span wise direction. 

Figure 3.6: Turbulent Wall Jet Scour Schematic View 
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In Fig. 3.7, free surface and velocity magnitude contours at equilibrium state are plotted. When 

the jet flow starts, it induces water waves in the domain. After the flow calms down, the free surface 

keeps an almost steady position. The free surface at the equilibrium state is almost flat except in 

the region of maximum scour. The velocity magnitude contours show that the jet flow comes into 

the domain through the small opening and after momentum diffusion and water entrainment it 

leaves the domain through free fall over the outlet weir. 
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Figure 3.7: Numerical Results for Turbulent Wall Jet Flow Field and Free Surface 

The stream trace in the region of jet opening and scour hole at equilibrium state is plotted in 

Fig. 3.8. The flow pattern is more clearly shown. The jet induces strong flow re-circulation and 

just above the jet inlet, there are some small circulation areas which are isolated from the main 

flow. Inside the scour hole, the stream trace lines show another circulation pattern. These flow 

patterns are closely related to the scour process. When the water leaves the jet orifice, the main 

physical processes are the momentum diffusion and entrainment of water from above into the jet 

flow. As a result, the magnitude of the maximum velocity and also the velocity distribution will be 
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Figure 3.8: Numerical Results for Turbulent Wall Jet Flow Stream Trace 

changed. This change is a complicated function of flow domain geometry and sediment properties 

(Chatterjee and Ghosh 1980). In Fig. 3.9(a), the maximum horizontal velocity normalized by jet 

inlet velocity is plotted against the non-dimensionalized x distance where B0 is the jet opening 

width. The wall jet momentum diffusion characteristics found in experiment are reproduced well 

by the numerical simulation. As in the experiment, the diffusion process is slower in the rigid apron 

region than in the erodible bed region. In the near jet opening region, the numerical results are very 

close to the experimental data. But in the far down stream region, the momentum diffusion is over 

estimated by the numerical simulation, i.e., the maximum velocity is smaller and the velocity 

distribution in the vertical direction is more uniform. This may come from the numerical diffusion 

nature of the schemes used in this test case. 

Wall jet flow near the jet opening can be divided into two regions. One is the inner boundary 

layer region and the other is the outer shear layer region. When the boundary layer meets the shear 

layer, the potential core will disappear and the jet flow is fully developed (Rajaratnam 1976). The 
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Figure 3.9: Turbulent Wall Jet Characteristic: (a) Jet Diffusion along x-Axis (b) Velocity Distribu­
tion at x=0.6m 

horizontal velocity at location x = 0.6 m downstream of the jet opening is plotted in Fig. 3.9(b). 

In Fig. 3.9(b), £ is defined as y/8, where 8 is the vertical distance from the wall to location of the 

maximum horizontal velocity. Non-dimensionalized velocity is plotted as a function of £. From 

Fig. 3.9(b), the numerical simulation predicted the velocity distribution fairly well. 

Fig. 3.10 shows the mesh development from the initial flat bed condition to the equilibrium 

configuration. The unstructured mesh is composed of three layers of fine quadrilateral cells in the 

boundary layer on the bottom and triangle cells elsewhere. With the change of bottom elevation due 

to scour and deposition, the computational domain gradually deforms while the unstructured mesh 

remains valid. There is a small artificial step at the transition point between the concrete apron and 

the sand bed. It has a depth of 5 mm. This small step is used to improve the mesh quality because 

the scour hole will make the cells in front of the transition point vertically stretched. Inside the 

small step, several mesh cells are introduced making the simulation stable. 

Scour profiles from numerical simulation at different times are plotted in Fig. 3.11 as solid 

lines together with the experimental results. The time required to get to equilibrium state is almost 

one hour for this test case. Fig. 3.12 shows the time development of the maximum scour and 

deposition. At equilibrium state, according to the numerical simulation results, the maximum 
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Figure 3.10: Turbulent Wall Jet Scour Mesh Deformation: (a) Initial (b) Equilibrium 
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scour depth is about 0.63 m and the maximum deposition depth is about 0.4 m. These fit well with 

the observations made in the experiment. From Fig. 3.12, the scour process occurs very rapidly in 

the early stage while at later stage, the profile changes very slowly. The maximum scour position 

and the peak of the sediment deposition dune move very slowly downstream. 
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Figure 3.11: Wall Jet Scour Profile 
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Figure 3.12: Wall Jet Maximum Scour and Deposition Development with Time: (a) Maximum 
Scour (b) Maximum Deposition 

In Fig. 3.13, the Shields number at equilibrium state is plotted. Chatterjee and Ghosh (1980) 

gave an estimation of critical shear stress along the bed using von Karman's integral theorem. But 
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there is a discrepancy between this estimation and the critical shear stress using Shields method. 

This discrepancy could be due to the non-hydrostatic pressure distribution, non-uniformity of the 

grain size or the pressure differential recorded by the Preston tube used in the experiment. Thus 

in Fig. 3.13, only numerical results for shear stress are plotted. The Shields number (shear stress) 

decreases with the distance from the jet opening. This is in agreement with the experiment. The 

maximum Shields number occurs near the transition point between the concrete apron and the 

sand bed. At equilibrium state, the Shields numbers along the bed are all below the critical Shields 

number which means that no sediment is moving. 

0.05 

0.04 

0.03 

0.02 

0.01 

0.00 

-0.01 

-0.02 

-0.03 

-0.04 

-0.05 

S
hields 

z 
g iber 

Figure 3.13: Bed Shear Stress Distribution at Equilibrium for Wall Jet Scour 

3.4.2 Wave Scour Around a Large Vertical Circular Cylinder 

Scour process around vertical pile caused by wave is more complicated because of the 3D nature 

of the problem. The free surface of water wave and 3D scour hole around the pile make it a good 

test case for the application of the solvers presented above. The test case uses the experimental 
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data obtained by Sumer and Freds0e (2001). The schematic view of the experiment is shown in 

Fig. 3.14. Test case 7 of the experiment is used in this work. In this case, the wave has a period 

of 3.5 s, wave height of 6.4 cm, wave length of 6.79 m and Keulegan-Carpenter (KC) number of 

0.61. The pile has a diameter of 1 m and the sand has tfco = 0.2 mm. 

The mechanism causing the scour around a vertical pile can be different under different con­

ditions. Flow regimes change when the dimensionless number KC (Keulegan-Carpenter number) 

increases. KC number is defined as 

where Um is the maximum undisturbed orbital velocity at the bed. When the pile is slender, the 

scour is primarily caused by vortex shedding (KC < 0(100)) and by horseshoe vortex (KC > 

0(100)) (Sumer et al. 1992; 1993). For this case, the free surface is of secondary importance and 

can be replaced by a rigid lid. Numerical simulations using the rigid-lid approximation captured 

the vortex shedding and horseshoe vortex well and gave good results (Roulund et al. 2005). When 

the pile diameter is big enough, the scour is caused by the combined effect of phase-resolved 

component of the wave flow and the steady streaming due to the presence of the large cylinder 

(Sumer and Freds0e 2001). For this case, the modeling of the free water surface is very important. 

Without the free surface, the steady streaming can not be correctly simulated and the scour process 

can not be captured. 

The waves in the experiment are generated by a piston type wave maker and at the end of the 

wave tank, there is a wave absorber to eliminate wave reflection. The details of the experiment can 

be found in the original paper. In the numerical simulations, the wave can be generated generally 

by two approaches: moving mesh (Aliabadi et al. 2003) and wave boundary condition (Mayer et al. 

1998). For the moving mesh approach, the piston movement is simulated by moving the boundary 

of the computational domain. For the wave boundary condition approach, the mesh is fixed but 

boundary condition on the piston part is given by wave theory. The second approach is adopted in 

this work. A time varying velocity profile is imposed at the piston boundary to generate the waves 
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Figure 3.14: Wave Scour around a Large Vertical Circular Cylinder Scheme (After Sumer and 
Freds0e (2001) With Permission) 

U = fr{t) [\](y)sin(ut + 0)} (3.25) 

where U is the velocity vector at the boundary, u is the wave frequency, 6 is the phase. V(y) is 

imposed by the type of the piston. In the test case, the relative depth h/L and wave steepness H/L 

are about 1/17 and 1/106 respectively. The linear wave maker theory applies and for the piston 

type wave maker in this case, U(y) is a constant (Dean and Dalrymple 1991). For finite amplitude 

wave cases, nonlinear effect is important and higher order terms need to be added. fr(t) is the 

"ramp" function to start up the piston. fr(t) has the form 

frit) 
T 

1 

sm(7r£) f o r O < i < T 

for t > T 
(3.26) 

where T is the wave period. 

The wave absorber is simulated using a damping zone (or sponge layer). In this damping zone, 

wave energy is artificially dissipated and wave reflection is minimized. The water depth and fluid 
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velocity in the damping zone are modified at each time step according to the method proposed in 

Mayer and Madsen (2000). Two blocks of meshes are used in the computation. One is for the 

wave tank and the other is for the damping zone which has the length of twice the wave length. 

The damping zone block has relatively coarse mesh to reduce the computational time. The Coarser 

mesh in the damping zone also has the effect of numerical dissipation which will make the wave 

absorber even better. Numerical simulation for Test 1 of the rigid bed experiments in Sumer and 

Freds0e (2001) is carried out to test the wave absorber algorithm. Wave profiles in one period are 

shown in Fig. 3.15 and the reflection coefficient is about 10% which is in the range of laboratory 

experiment setups. 
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Figure 3.15: Wave Profiles in One Period for Test 1 of Rigid Bed Experiment in Sumer and Freds0e 
(2001) 

It is shown by the experiment that when a large vertical cylinder is subjected to a progressive 

wave, the combined effect of incident wave, reflected wave and diffracted wave will create phase-

resolved flow and steady streaming. Steady streaming is very important for the mass transport 

near the bed and therefore the scour process. Steady streaming due to the wave and induced by the 

presence of cylinder are simulated and compared with the experiment. For the steady streaming 

due to wave, the Test 1 of rigid bed experiment in Sumer and Freds0e (2001) is simulated. Fig.3.16 

shows the period-averaged velocity profile at the location of the cylinder center (without the cylin-
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der in the wave tank). The numerical velocity profile is obtained by averaging the velocity over 30 

wave periods. The return flow pattern caused by the wave drift and confined wave tank environ­

ment is well captured. The steady streaming near the bed is also captured despite the streaming 

velocity is lower than the experiment. For steady streaming due the presence of the cylinder, the 

Figure 3.16: Period-Averaged Velocity Profile at the Location of Cylinder Center in Undisturbed 
Flow 

Test 1 of rigid bed experiment in Sumer and Freds0e (2001) is simulated with the cylinder in the 

wave tank. Fig. 3.17 shows the period averaged velocity components at point P which is very near 

the cylinder against the measurement. The radial velocity Ur is in the outward direction over the 

phase interval from about ut = 150° to 360° which is in agreement with experiment. The tangen­

tial velocity Ug shows a steady streaming in the opposite direction of wave propagation since the 

negative tangential velocity experiences a longer period of time. 

Fig. 3.18 shows an instantaneous free surface of the wave. A probe point (x = 5.7 m, y -

0.2 m, z = 5.3 m) is also indicated in the figure. Fig. 3.19 shows the pressure change with time 

at the probe location. During the first several time periods, the wave is under development and 

the pressure has some noise. But when the wave is fully developed, the pressure is undergoing 

periodical changes as expected. 
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Figure 3.17: Period-Averaged Velocity Components at Point P for KC=1.1, D/L=0.15, z=0.4 from 
Bed: (a) Measurement Point (b) Radial Velocity (c) Tangential Velocity 
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Figure 3.19: Pressure Probe at Point (x = 5.7 m, y = 0.2 m, z = 5.3 m) 
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Fig. 3.20 shows the equilibrium state of the scour around the pile. The numerical result is com­

parable with the experimental data although the maximum scour depth obtained with the numerical 

simulation is slightly higher than the experiment result. As in the experiment, the deposition zone 

is on the side of the pile and the scour zone is in the front and in the back. Although the scour 

pattern is not identical to that of the experimental results, they are very similar. Fig. 3.21 shows 

the scour around the periphery of the cylinder base. Only half of the periphery is shown because 

of symmetry. From this figure, the scour and deposition patterns around the pile are seen to agree 

well with the experiment except for the amplitude. This may be caused by the fact that some other 

factors in the experiment are not included in the numerical model. Further research is needed to 

make the model more accurate. 

3.5 Discussion 

3.5.1 Effect of Free Surface 

For the rigid-lid approach, the free surface is replaced with an imaginary horizontal frictionless 

plane. In reality, even when the free surface is almost flat and will not change with time, a rea­

sonable position for the free surface is not easy to be defined. This is because locally, such as in 

the case of free surface around a bridge pier, the free surface may change very abruptly and the 

rigid-lid approach simply can not capture these features. On the other hand, for the submerged 

wall jet case, the water depth in the flow domain is much bigger than the jet opening and the free 

surface changes very slowly. This makes the rigid-lid approximation a reasonable one. For scour 

around slender piles under waves, the rigid-lid assumption is also valid since the most important 

mechanism here is the vortex shedding and horseshoe vortex. However, for the wave-induced 

scour around large piles, it's unreasonable to use the rigid-lid approximation since the dominant 

mechanism here is the phase-resolved component of the wave flow and the steady streaming. 
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Figure 3.20: Wave Scour around a Large Vertical Circular Cylinder: (a) Experimental Data (b) 
Numerical Result (c) 3D View of Numerical Result 
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Figure 3.21: Scour at Periphery of Cylinder Base 

3.5.2 Interface Capturing Techniques 

In the current numerical model, the two moving surfaces (water free surface and moving bed) are 

captured by different approaches, namely Eulerian and Lagrangian approaches. The free surface 

is solved by CICSAM VOF scheme, which is an Eulerian approach. The moving bed is captured 

by mesh deformation method, which is a Lagrangian approach. The scour test cases in this work 

are relatively simple. For more complicated problems, if there are objects interacting with the fluid 

phase and the bed, the moving mesh technique will not be appropriate. The interface between the 

object, water and bed is so complicated and changing with time. Simply moving a grid point along 

the interface will be not feasible. For such cases, the Eulerian approach (VOF or LSM) can be used 

to implicitly track the interface. This could provide a new research direction in the scour problem 

and is currently being explored. 
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3.5.3 Limitation of Mesh Deformation Approach 

As mentioned in the previous section, the mesh deformation approach is hard to implement with 

the presence of interaction between moving objects and bed or when the boundary movement is 

irregular. Also when the amplitude of the boundary movement is big enough, the mesh may be 

highly distorted and the deteriorated mesh quality will make the computation not easy to converge, 

eventually leading to unstable solutions. In order to avoid these problems, dynamic mesh approach 

should be used. In dynamic mesh approach, mesh cells can be split or merged when necessary. 

But comparing with mesh deformation, dynamic mesh approach is more difficult. Combination of 

these two approaches can be promising for scour problem where scour pattern is complicated and 

the scour/deposition depth is very large. 

3.6 Conclusions 

Numerical model FOAMSCOUR for local scour with free surface and automatic mesh deformation 

is proposed. The turbulence model used is the simple two equation k — e model. Other turbulence 

models, even large eddy simulation, can be used to improve the accuracy of the fluid flow field 

simulation. All these models are readily implemented in OpenFOAM. The free surface is modeled 

by VOF method while the scour process is modeled by moving mesh method. These two methods 

for moving boundaries(free surface and bed) are coupled together. Each method has its merits 

and shortcomings. Eulerian approach can be used to capture the complex scour profiles. Flow 

field is coupled with sediment transport (both bed load and suspended load) using a quasi-steady 

approach. Parallel computations are used to reduce the CPU time which is usually tremendously 

large for morphological simulations (Parker and Garcia 2006). 

Numerical simulations for turbulent wall jet scour and wave scour around large vertical cylin­

der are carried out to compare with experiments. Good results have been obtained using the pro­

posed modeling approach. Velocity field and other flow field characteristics compare fairly well 

with experimental observations. The maximum scour depths and local scour profile fit well with 
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the experiment data. Further research is needed to investigate the effect of turbulence model for 

free surface waves (especially for near breaking and breaking waves) and to study the possibility 

of using an Eulerian approach for morphological modeling. 
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Chapter 4 

Three-Dimensional Numerical Model for 
Momentary Liquefaction Potential under 
Waves 

4.1 Introduction 

The interest in wave-seabed-structure interaction is growing because it is important for geotech-

nical engineers to design offshore foundation and structure (such as pipe lines, piles and break 

waters). Also sinking/floating of objects on the sea bed (such as wrecked ships, mines) is closely 

related to the sea bed response under waves. Many experiments (Sakai et al. 1994; Sumer et al. 

1999) and numerical simulations (Magda 1996; Jeng and Lin 1999; Gao et al. 2003; Liu and Garcia 

2006b) have been done to try to understand this complicated process. There are also many ana­

lytical models which describe the sea bed response and give fairly good results (Yamamoto 1977; 

Mei and Foda 1981; Jeng and Hsu 1996; Yuhi and Ishida 2002). 

Although many numerical models have been developed to solve sea bed response under wave, 

most of them just assume the wave pressure on the water-bed interface using wave theory. This is 

valid for many cases if there is only water wave and sea bed interaction. But for the case when there 

is extra object in the system (such as pile, semi-buried foundation, etc.), the water flow around the 

object will be highly three dimensional and is not easy to get an analytical solution from wave 

theory. Wave, sea bed and object form a big coupled system. Multi-physics numerical models 

have been widely used to solve these coupled systems. The approach in these models is to solve 

different governing equations on different domains (or some on the same domain) and couple the 

*This chapter, as a manuscript, is published in International Journal of Offshore and Polar Engineering 
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system through common boundary or other ways. This is also the approach used in this chapter. 

3D computational fluid dynamics (CFD) models is used to predict the free surface wave field and 

the results can be used as boundary condition for the sea bed governing equations. 

Traditionally, the Biot consolidation equations used in this chapter to describe the sea bed re­

sponse are solved via finite element method (FEM). FEM is the most widely used method in stress 

analysis. But FVM is gaining popularity in this area because it is good at treating complicated, 

coupled and non-linear differential equations (Jasak and Weller 2000). Application of FVM in 

stress analysis can be found, among many others, in Demirdzic et al. (1994) and Demirdzic et al. 

(1997). An iterative scheme for the Biot consolidation equation using FVM is proposed in this 

chapter. Momentary liquefaction potential due to waves are assessed based on the numerical result 

of consolidation. 

The structure of this chapter is as follows. Governing equations of the coupled system are 

described first. Then the numerical schemes used in this chapter are discussed. Numerical verifi­

cation and application of the current model are provided. Discussion and conclusion are at the end 

of the chapter. 

4.2 Governing Equations 

Fig. 4.1 shows a typical experiment setup for the sea bed response under waves. Governing equa­

tions in different parts of the domain (sea bed domain and fluid domain) are listed below. The sea 

bed response is governed by Biot consolidation equations. The fluid flow is governed by Navier-

Stokes equations with k — e turbulence model. 

4.2.1 Biot Consolidation Equations 

Governing equations for the poro-elastic sea bed two phase media is the Biot consolidation equa­

tion (Biot 1941): 
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Figure 4.1: Schematic View of Typical Experiment Setup for the Sea Bed Response under Waves 

GV2v + 
G 

\~2v 
V(V-v) = Vp 

fc^o n dp d ._ . 
- V p = — T — - \ (V • v) 
7
 p K dt dt{ ' 

(4.1) 

(4.2) 

Eq. 4.1 is the force balance equation of the bed soil, and Eq. 4.2 is the storage equation which 

describes the mass balance of the pore water. Here p is the pore water pressure, v is the displace­

ment of soil skeleton. G is the shear modulus of soil, u is the Poisson ratio of the soil, K is the 

coefficient of the isotropic permeability of soil, 7 is the specific weight of water, K' is the bulk 

modulus of elasticity of water, n is the soil porosity. These equations assume that the hydraulic 

permeability is isotropic and the stress-strain relationship is linear. Strain tensor e is defined in 
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terms of the displacement vector v as 

2 L 
Vv + (Vv) (4.3) 

and the stress tensor a is related to strain rate e via 

a — pi 

2Ge + 2G-
l-2u 

tr (e) — p 

(4.4) 

(4.5) 

where I is the unit tensor. tr(e) is the trace of the tensor e which is equal to V • v. This equation 

also says that the stress in soil is constituted by two parts:the effective stress a supported by soil 

skeleton and pore water pressure p. Here the stress-strain relationship is slightly different from 

that of elastic solid. The only difference is that the pore pressure is included for the porous media. 

Plane strain is also assumed here. 

4.2.2 Navier-Stokes Equations 

The governing equations for the wave part is the Navier-Stokes equations: 

dpu 
~dt 

V u 

+ V • (pan) - V • (fiS) = -Vp + pg + oK 
Va 

(4.6) 

(4.7) 

a = 

where u is the velocity vector field, p is the pressure field, a is the volume fraction function for the 

two fluids defined by 

0 volume occupied by air 

1 volume occupied by water 

S is the strain rate tensor defined by S = \ [Vu + (Vu)T]. a is surface tension, K is the surface 

curvature. Surface tension is not so important in current problem but it's included for complete­

r s ) 

80 



www.manaraa.com

ness. The density p and viscosity p in the domain is given by 

p = api + (l-a)p2 (4.9) 

p, = ap,i + (1 — a)p2 (4.10) 

Volume fraction a is transported by the fluid velocity field. The equation for the volume 

fraction scalar a is 

^ + V - ( u a ) = 0 (4.11) 

Numerical diffusion will spread out the sharp interface between water and air. An compressive 

interface capturing scheme is used to resharpen the interface. The details of the present free surface 

modeling can be found in Ubbink and Issa (1999). 

4.2.3 Turbulence k-1 Model 

Equations in wave part are closed by conventional k- e model (Lauder and Spalding 1973; Rodi 

1993). 

Pt = C^pk- (4.12) 

£^ + V-(ufc) = -V(^Vfc) + 2 ^ | V u | 2 - e (4.13) 
dt p Ok P 

§ + V.<„£) = I v < * V < ) + 2 ^ 1 - 4 

where pt is turbulence eddy viscosity, k is turbulence kinetic energy and e is turbulence energy 

dissipation rate. The constants appear in Eqs. (4.12), (4.13) and (4.14) take the values given in 

Table 3.1. 

81 



www.manaraa.com

4.3 Numerical Simulation Schemes and Procedures 

The code used in this research is the open source numerical library (OpenCFD 2006). It's freely 

available through internet. OpenFOAM is primarily designed for problems in continuum mechan­

ics. It uses the tensorial approach and object oriented techniques (Weller et al. 1998). OpenFOAM 

provides a fundamental platform to write new solvers for different problems as long as the prob­

lem can be written in tensorial partial differential equation forms. In this research, the flow field is 

solved by the adaption of the original turbulence solver for incompressible fluid in the code. The 

consolidation equation solver is newly added. The core of this code is the finite volume discretiza­

tion of the governing equations. Almost all kinds of differential operators possible in a partial 

differential equation, such as temporal derivative, divergence, laplacian operator, curl, etc, can be 

discretized in the code. The finite volume details of the code can be found in Jasak (1996). One 

application of OpenFOAM in stress analysis can be found in Jasak and Weller (2000). Next several 

sections briefly introduces the numerical schemes used in the coupled solvers. 

4.3.1 Numerical Scheme for Foundation Part 

Finite element method is usually used to solve the Biot equations of soil consolidation (Lewis and 

Schrefler 1998) and to do other stress analysis. But finite volume method is becoming popular 

because of its flexibility to deal with complex domain. In this chapter, FVM is used to solve 

the consolidation equations. Comparing the Biot consolidation equations with the Navier-Stokes 

equations shows they are very similar. Both equations couple two quantities (pore pressure and 

displacement for consolidation, pressure and velocity for fluid) and both equations describes the 

mass balance and force balance. Inspired by these similarities, a new scheme is proposed to solve 

consolidation equations on an iterative basis. This iterative procedure is similar to the SIMPLE 

and PISO schemes for Navier-Stokes equations. A segregated approach is used to solve the couple 

consolidation equation which means components of the displacement vector and pore pressure are 

solved separately. At each time step, storage equation (Eq. 4.2) is rearranged into implicit and 
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explicit parts and is solved first according to 

n dp fc 2 d lr_, ,, , , , 
-F7-£ + -V 2 p = — V • v (4.15) 
A at 7 pt , implicit explicit 

where the displacement v in the explicit part is from previous iteration or initial condition. Then 

the force balance equation (Eq. 4.1) is solved. In order to get higher efficiency of the segregated 

solver and to increase the convergence radius, a decomposition and a rearrangement of Eq. 4.1 is 

carried out similar to Jasak and Weller (2000). The terms in the equation are also split into implicit 

part and explicit part. The aim is to achieve maximum implicity. Assuming G and u are constant, 

using the fact that 

V (V • v) = V • (IV • v) = V • (Itr (Vv)) (4.16) 

the force balance equation (Eq. 4.1) can be written as 

72. r . G T-72. — — ' G w ,„ N G GV v + Y~^v v = vP - v • I Y^^ltr <Vv) ~ Y~^Vv I ^4-1 7> 
implicit explicit 

Eq. 4.17 is solved for each component of vector v and the resulting v is used to solve storage 

equation again. This inner coupling is looped until desired convergence tolerance is achieved. 

4.3.2 Numerical Scheme for Fluid Part 

The numerical solution for Navier-Stokes equation of incompressible fluid flow imposes two main 

problems (Jasak 1996): the nonlinearity of momentum equation and the pressure-velocity cou­

pling. For the first problem, two common methods can be used to deal with it. The first is to solve 

a nonlinear algebra systems after the discretization. This will need a lot of computational effort. 

The other is to linearize the convection term in the momentum equation by using the fluid velocity 

in old time steps which satisfies the divergence-free condition. The latter method is used in this 

research. For pressure-velocity coupling, many schemes exist, such as SIMPLE (Patankar 1981) 
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and PISO (Issa 1986). PISO scheme is used in this code. For the k — e turbulence model equations, 

although k and e equations are coupled together, they are solved by segregated approach, which 

means they are solved one at a time. This is also the usual approach used in most CFD codes. 

4.3.3 Grids 

There are two grids in the computational domain. One is for the fluid and the other is for the 

sea bed. Since no governing differential equation is specified on the object, no grid is needed for 

it. In some cases such as ocean pipe line analysis, the deformation of those pipes under wave is 

important and the grid for the pipe is needed (Magda 1996). Fig. 4.2 shows how the two grids 

(wave tank and sea bed)are used to do coupling computations. Information is transferred between 

fluid grid and sea bed grid via the common boundary, i.e. sea bottom. The figure also shows the 

presence of an object. 

Sea Bed Domain ^ ^ 
z 

Figure 4.2: Coupling between Fluid Domain and Bed Domain 
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4.3.4 Boundary Conditions 

Boundary Conditions for the Sea Bed Domain 

In this chapter, only finite soil depth is considered for the sea bed domain because it's the case for 

most of the physical experiments. Infinite soil depth case can be achieved by extending the sea 

bed downward until the numerical result won't change anymore. The boundary conditions for the 

sea bed domain is very similar to Magda (1996) and Jeng and Lin (1999). At the bottom of the sea 

bed, zero displacements and zero vertical flow are specified, i.e. 

v = 0 (4.18) 

£ = 0 (4.19) 
dn 

where n is the surface normal direction vector. 

At the top of sea bed (i.e. the common boundary between two domains), the fluid shear stress 

is neglected and the pore water pressure is equal to water wave pressure on the bed. This pressure 

value comes from the fluid solver. For the displacement on this surface, it's more complicated. 

Since the pore water pressure is set to be the wave pressure, the effective normal stress a'yy on the 

this boundary is zero. This gives the boundary condition of Neumann type (traction boundary) for 

displacement (Demirdzic et al. 1994; Jasak and Weller 2000) 

t - n 
n • Vv = 

H (Vv)T - (M + A) Vv AnV-v 
(4.20) 

2/u + A 

where t is the traction stress on the bed which equals zero for the free bed surface in this case. 

On the surfaces of object, it's assumed that no water can flow through. So zero pressure 

gradient as in Eq. 4.19 applies. For the displacement on the object, the object sides and bottom are 

considered separately. For the object sides, it's assumed that the sides are smooth and the soil can 

slip on the surface. The normal displacement component on the sides are set to zero. For the object 
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bottom, the traction boundary condition (Eq. 4.20) is specified. The traction on the bottom is from 

the simple force balance of the object (see Fig. 4.3). The forces on the object are flow drag Fdrag, 

flow lift Fuft, gravity mg and bottom supporting force. The friction force on the object sides are 

neglected. This is reasonable because the sand on the sides of the object can be assumed loosely 

back filled in experiment. The flow drag and lift are calculated at each time step from the flow 

solver. So the Neumann type condition in Eq. 4.20 is applied with traction t from force balance of 

the object. This assumption is valid if the object is rigid body and will not move. It will be violated 

if the object is moving under wave force. 

i y 

X 

Flift 

Fdri ag 

Figure 4.3: Force Balance of the Object 

86 



www.manaraa.com

Boundary Conditions for Fluid Domain 

The wave in the physical experiment is usually generated by a piston type wave maker and at 

the end of the wave tank, there is a wave absorber to eliminate the wave reflection. In numerical 

simulation, the wave can be generated generally by two approach: moving mesh (Aliabadi et al. 

2003) and wave boundary condition (Mayer et al. 1998). For moving mesh approach, the piston 

movement is simulated by moving the boundary of the computational domain. For wave boundary 

condition approach, the mesh is fixed but boundary condition on the piston part is given by wave 

theory. The second approach is adopted in this chapter. A time varying velocity profile is imposed 

at the piston boundary to generate the waves 

U = fr(t) \U(y)sin{ut + e) (4.21) 

where U is the velocity vector at the boundary, u is the wave frequency, 9 is the phase. U(y) is 

imposed by the type of the piston. fr(t) is the "ramp" function to start up the piston. fr(t) has the 

form 

L — 1 
T sin (74) forO <t<T 

fr(t) = { J * l (4.22) 
1 for t > T 

where T is the wave period. 

The wave absorber is simulated using a damping zone (or sponge layer). In this damping zone, 

extra fluid viscosity is added to the momentum equation to dissipate the fluid dynamic energy. 

In numerical test cases, in order to eliminate the introduced artificial effect, the damping zone is 

extended far downstream. That's the reason that the wave tank domain used in this chapter will 

be longer than the sea bed domain. An alternative method by modifying the water depth and fluid 

velocity in the damping zone can be found in Mayer et al. (1998). 

At the piston, pressure is set to be zero normal gradient to be consistent with velocity condition. 

Turbulence quantities such as k and e are set as zero normal gradient at the piston wall. The 
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condition at the wave tank outlet is chosen as zero gradient for all quantities except pressure which 

is specified as hydrostatic (i.e., the dynamic pressure is zero). The top boundary of the fluid 

domain is atmosphere. The dynamic pressure is set to zero as the outlet and the velocity is set 

to zero. Other quantities are set to zero normal gradient. At the object's surfaces or flume walls, 

it is assumed to be hydraulically smooth. No-slip condition is set for velocity with zero normal 

gradient for pressure. Other quantities such as k and e are also set as zero normal gradient. 

4.3.5 Simulation Process 

In order to study the effect of waves, base state of pore pressure and displacement without wave 

is obtained by doing the computation for a period of time with the wave maker shut off. This 

resembles the fact that in the experiment, the bed soil is already in the equilibrium state before 

the wave maker is started. After that, the wave maker boundary condition is switched on and 

waves are generated. Base stable pore pressure and displacement is subtracted from the result to 

investigate the effect of waves. The main application of current numerical model is the study of 

liquefaction potential. When the pore water pressure is so excessive that the effective stress in soil 

is zero or negative, the soil is in the state of liquefaction (Jeng 1996). For a flat bed, the criterion 

for liquefaction is 

> 1 (4 23) 

where p is excessive pore pressure, % and j w are unit weight of soil and water, K0 is the coefficient 

of lateral earth pressure at rest which ranges from 0.4 to 1.0. y is the depth of the soil measured 

downward from the bed. But for complicated computational domain, it is not easy to calculate the 

effective soil gravity force at each point in the bed. In this chapter, the dimensionless excessive 

pore water pressure (non-dimensionized by po = pgH0, where H0 is the wave height) is used as 

an indicator for the liquefaction potential. 

At each time step, the fluid field is first solved and the pressure on the sea bed is mapped to the 

bed domain. Based on the pressure from fluid solver, the Biot consolidation equations are solved. 
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This process continues until wave period averaged pore pressure and displacement reach steady 

state or the specified computation time is reached. 

4.4 Model Verification and Applications 

4.4.1 Verification of FVM Solver for Biot Consolidation Equations 

In order to verify the Biot equation solver in the numerical model, a test case which is similar 

to that of Jeng and Lin (1999) is carried out. Fig. 4.4 is the schematic view of the test case. The 

details of the test case can be found in Jeng and Lin (1999) and the analytical solution can be found 

in Jeng and Hsu (1996). In this test case, uniform sea bed is under the progressive wave. The bed 

soil depth h = lm and the wave pressure amplitude pb = 2000iV/?n2. The wave number k = ir 

and wave frequency u = 2n. 

A 
Pressure On Sea Bed 

p=pbcos(kx-a;t) 

immmmmmmmMmmtmz?: 

Figure 4.4: Numerical Test of Sea Bed Response 

The numerical result of excessive pore pressure at each depth of the soil versus kx — ut is 

plotted in Fig. 4.5. The analytical solution is also plotted. The difference between numerical result 
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and analytical solution is so small that they are almost identical to each other. From the figure, 

the excessive pore pressure diffuses with the increase of depth which is as expect. For flat bed, 

top layers of soil are most vulnerable to storm waves and failure of foundation due to liquefaction 

always happens in these layers. 
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Figure 4.5: Pore Pressure Comparison between Numerical and Analytical Solution 

Fig. 4.6 shows the numerical results of the test case. Fig. 4.6(a) shows the pore water pressure 

and Fig. 4.6(b) shows the displacement magnitude. From the figures, it's clear that under wave 

crest the pressure on the bed is increased and the soil is compressed. Under wave trough, it's 

just the opposite. The displacement vector field in Fig. 4.7 demonstrates this pattern even more 

clearly. The geometry in this figure is distorted by IE + 4 times the displacement to show elastic 

deformation. 
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(a) 

(b) 

Figure 4.6: Displacement of Consolidation Test Case: (a) Pore Pressure (b) Magnitude of Dis­
placement 
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Figure 4.7: Displacement Vector Field (Geometry Distorted) 

4.4.2 3D Test Case of Sea Bed Response under Waves with Presence of an 

Object 

In this test case, 3D sea bed response in the numerical wave tank is simulated. The wave tank is 

40m long and 3m wide. The water depth in the tank is lm. An object (which is represented by a 

box of dimensions 2m x 0.5m x 0.5m) is half buried in the sand (see Fig. 4.1). The presence of the 

object will change the wave flow field. Hence the local pressure and force on the sea bed will be 

changed. U(y) in Eq. 4.21 is set as 0.5m/s and wave period T is 3s. The generated wave height 

H0 is about 0.4m and wave length is about 10m. One fact needed to be pointed out is that the 

wave simulated in this chapter is not so strong that the excessive pore water pressure can't cause 

dramatic change in liquefaction zone. But the main purpose of this chapter is to demonstrate the 

new methodology of coupled solver of free surface fluid field and Biot consolidation equations. In 

order to simulate real storm waves, more computation resource is needed. Future research can use 

parallel computation to decrease the computational time and simulate bigger domain with higher 

wave height. 
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Fig. 4.8 shows the fluid force components and magnitude on the object. The forces on the ob­

ject undergo periodical changes. The most significant components are in the streamwise direction 

and vertical direction which is as expected. The spanwise fluid force is very small comparing with 

the other two. Second mode effect can also be seen in the figure but is not significant. This could 

be caused by the wave reflection from the object or the wave tank end. The forces are used to 

calculate the traction boundary condition on the object bottom. 

2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 

t(s) 

Figure 4.8: Object Force History 

In Fig. 4.9, the free surface of waves in one typical period is plotted. The wave height relative 

to the water depth can also be seen. Fig. 4.10 shows the iso-surface of the dimensionless instan­

taneous excessive pore pressure inside the sea bed. With the propagation of the wave, the sea bed 

pressure response also moves forward accordingly. 
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(a) 

(b) 

T T 
Figure 4.9: Free Surface of Waves in One Typical Period: (a) t = t0 + — (b) t = t0 + — (c) 

T: -LI 

3T 
t = t0 + — (d)t = t0 + T 
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(c) 

(d) 

T T 
Figure 4.9: Free Surface of Waves in One Typical Period (Cont'd): (a) t = t0 + -7 (b) t = t0 + -

°->T 
(c)t = to+"—(d)t = t0 + T 
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(a) 

(b) 

Figure 4.10: Dimensionless Excessive Pore Pressure under Waves in One Typical Period : (a) 
T T 3T 

t = t0 + - (b) t = t0 + - (c) t = t0 + — (d) t = t0 + T 
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(c) 

(d) 

Figure 4.10: Dimensionless Excessive Pore Pressure under Waves in One Typical Period (Cont'd): 
T T 3T 

(&)t = to + -Q))t = t0 + -(.c)t = tQ + — (d)t = t0 + T 
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Fig. 4.11 is the contour plot of non-dimensionized excessive pore pressure under the instan­

taneous flow field (t = to + ^ ) in Fig. 4.9(c). The reason to plot for this time point is that the 

wave crest is almost on top of the object and it's considered to be the most possible time for the 

momentary liquefaction to happen. From the figures, it's clear the pressure distribution is disturbed 

by the half buried object. At this very moment, the excessive pore pressure in front of the object 

is very high and the liquefaction potential in this area and under the object is amplified. From the 

slice view, the excessive pore pressure beneath the object is also at the peak value. This is caused 

by two facts. One is that the wave crest in just above the object. The other is that the fluid forces 

on the object are also at maximum values. 

4.5 Discussion 

4.5.1 Soil Constitutive Model Effects 

For geotechnical problems, a realistic stress-strain constitutive relationship is one of the most 

important things for the ability of the numerical model to reproduce the reality situations. Herein, 

the simple linear isotropic elastic model is used to describe the soil skeleton. More advanced 

and accurate constitutive models (such as variable elasticity, elasto-plastic model and visco-plastic 

model, etc.) can be easily incorporated in the current numerical code. Anisotropic effect can also 

easily come into the model since the code is based on the tensorial description of the equations and 

anisotropic tensors can be included inside the differential operators. 

4.5.2 Residual Liquefaction Effects 

Only momentary liquefaction is model in this chapter since it is simple and easy. Liquefaction is 

an complicated physical process which is still not well understood today. Liquefaction is generally 

caused by two main mechanisms: momentary liquefaction and residual liquefaction (Sumer and 

Freds0e 2002). Residual liquefaction is more complicated than momentary liquefaction because 
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Figure 4.11: Dimensionless Excessive Pore Pressure on the Bottom Corresponding to the Moment 
of Fig. 4.9(c): (a) 3D view of the Bottom Pressure (b) Slice View of the Bottom Pressure 
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the pore pressure builds up with time. Some simplified models existing for the residual liquefaction 

add a source term to the governing equation of pore pressure. This can also easily be incorporated 

into current model. Further research is needed to carefully verify the parameters and to what 

happens after the liquefaction. 

4.5.3 Bed Morphodynamics and Object Movement 

In the wave-seabed-object system, another process, sediment transport, is also very important 

and is closely related the flow field and bed soil. Flow field change around the object causes 

scour and deposition of the sediment. Sediment movement will change the sea bed elevation 

and consequently affect the flow field. This sea bed change also will change the domain of the 

consolidation and change the pore pressure distribution. Scour is one of the main reasons of 

foundation failure in ocean and river engineering. Sediment transport together with the other 

processes modeled in this chapter forms an even bigger coupled system. Sediment transport and 

morphodynamic models should be included in the future. 

The object is assumed to be at fixed position during the computation. This is not always true 

since when the liquefaction occurs, the soil can't support the object any more and the object will 

move. Even without liquefaction, the object could rotate or slide under the influence of fluid 

force. All these make the problem extremely complicated and it's impossible to include all factors 

into the numerical model. But by fixing the object in one position, it is possible to investigate 

the possibility of liquefaction and analyze the dynamics of the system. This could be useful for 

engineers to design structure and foundations to prevent damage under extreme conditions. 

4.6 Conclusion 

The numerical model in this chapter can solve the coupling problem between waves, object (struc­

ture) and sea bed response. Sea bed response under wave is one of the keys to the understanding of 

liquefaction. The wave induced shear stress and pore pressure in the soil is governed by Biot con-
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solidation equation. Free surface is modeled by Volume of Fluid (VOF) method and water wave is 

generated by numerical wave maker boundary condition. Instead of using finite element method 

to do stress analysis inside the bed material which is the traditional method used in geotechniques, 

an iterative numerical scheme is proposed to solve Biot consolidation equation using finite volume 

method. The new scheme shows fast convergence rate and high accuracy. The coupling between 

water wave and sea bed is through pressure and stress condition on common boundaries. Two 

numerical tests of the proposed scheme is carried out. First numerical case tests the consolida­

tion solver part of the numerical model. Good agreement with analytical results is obtained. The 

second case is a 3D test to study the interaction between wave, sea bed and object. A box is half 

buried in the wave tank. More complicated real geometry can be simulated as well. From the result 

excessive pore pressure of the sea bed, liquefaction potential can be analyzed. Only momentary 

liquefaction can be studied using current model. For residual liquefaction, the modified Biot con­

solidation equation should be solved. The mddel proposed in this chapter can be used to guide, the 

design of under water structures and foundations. 
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Chapter 5 

Models for the Residual Pore Water 
Buildup Process 

5.1 Introduction 

Liquefaction can cause enormous damage to infrastructures, and there has been great interest in the 

geotechnical profession to study the liquefaction due to earthquakes and general cyclic loadings. 

The most cited example of liquefaction damage due to the earthquake is the Alaska and Niigata 

earthquake in 1964 where buildings tilted. During an earthquake, shear waves are propagated 

upwards in the sediment deposit from the earthquake center to the surface. During an ocean storm, 

the water waves will induce cyclic shear stress on the bottom of the seabed. This cyclic shear stress 

will also lead to the buildup of excessive pore pressure in the same way as during an earthquake. 

Another aspect for an ocean storm is when structures interact with the water waves and the seabed, 

lateral forces and overturning momentum will be exerted on the structure. The forces and the 

momentum will change direction during one wave period. These facts will cause the foundation 

soil to experience cyclic stresses in both horizontal and vertical directions (Taiebat 1999). 

In general, liquefaction is a term used to describe the behavior of loose saturated cohesionless 

soils, i.e. loose sands, which go from a solid state to a heavy liquid, or reach a liquefied state as 

a consequence of increasing pore water pressures, and thus decreasing effective stress. In Seed 

(1976), liquefaction is defined as a condition where soil deforms continuously with low residual 

strength or without strength. Liquefaction is more likely to occur in loose to moderate granular 

This chapter, as a manuscript, is in preparation for possible publication in Journal of Engineering Mechanics, 
ASCE 
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soils with poor drainage. Deposits most susceptible to liquefaction are young sands and silts of 

similar grain size (well-sorted), in beds at least several feet thick, and saturated with water. Such 

deposits are often found along river beds, beaches, and dunes. Some examples of liquefaction 

include quicksand, quick clay, fluid mud, and earthquake liquefaction (Wikipedia 2007). Although 

liquefaction can happen under both static and cyclic loadings, this chapter limits the study to the 

case of liquefaction due the cyclic loadings. 

The interest in liquefaction is growing because it is important for geotechnical engineers to 

design onshore/offshore foundations and structures. Liquefaction is one of the main mechanisms 

which dominates the interaction between water waves, sea bed, and structures. Due to liquefaction, 

the supporting foundations will loose their strength and the supported structures (such as oil pipe 

lines) will sink or float and hence cause damage. Experimental work (Sakai et al. 1994; Sumer 

et al. 1999) and numerical simulations (Magda 1996; Jeng and Lin 1999; Gao et al. 2003; Liu 

and Garcia 2006b; Cardenas and Wilson 2007) have been done to understand this complicated 

process. Analytical models which describe the sea bed response under waves have been developed 

for many years. Yamamoto (1977) treated the wave-induced sea bed response analytically based 

on the three-dimensional Biot consolidation theory (Biot 1941). Closed form of the analytical 

solutions are given. One conclusion from the paper is that the bed response is strongly dependent 

on the permeability and the stiffness ratio G/K', where G is the shear modulus and K' is the 

apparent bulk modulus of elasticity of water. 

Mei and Foda (1981) treated the porous elastic medium using Biot's linearized theory, which 

can be seen as a special case of the mixture theory. For sufficiently high frequency waves, the area 

near the water-soil interface can be divided into a boundary layer of Stokes' type and an outside 

layer. In the outside layer, fluid and the solid skeleton move together according to the laws of the 

classical elasticity theory for a single phase. Based on this division, the governing equations can 

be simplified and analytical solutions are proposed. 

In Jeng and Hsu (1996), a closed-form analytical solution is developed for the wave-induced 

pore pressure, soil displacements, and effective stresses in an elastic sea-bed subject to a system of 
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two intersecting waves. Although the solution is for the finite depth soil, it can be reduced to the 

conditions for soil of infinite thickness. The solution can also be extended to the limiting cases of 

two-dimensional progressive and standing waves for soil of finite thickness. The authors compared 

their analytical solutions with numerical results and the solutions from Yamamoto (1977) and Mei 

and Foda (1981). The proposed solutions are found in complete agreement with the results of 

Yamamoto (1977) for both fine sand and coarse sand. The solutions also agree with those of Mei 

and Foda (1981) for the fine sand while deviation is observed for coarse sand. In Jeng et al. (2007), 

a new approximation for the pore water pressure buildup in marine sediments is proposed which 

will be discussed in detail in this chapter. 

Cheng et al. (2001) corrected some errors contained in the analytical solution for wave-induced 

pore pressure accumulation in McDougal et al. (1989) and gave the revised solution in a more 

general form. The authors studied the behavior of the solution under different soil conditions. 

For deep soil, the solution is sensitive to the soil shear stress in the top thin layer of the soil. In 

contrast, for shallow and finite depth soil, the solution is sensitive to shear stress in the thin layer of 

soil near the impermeable base. It is also found that a small error in the soil shear stress can lead to 

a large error in the accumulated pore pressure. Sensitivity analysis is also done to investigate the 

relationships between the accuracy of the pore pressure accumulation and the accuracy of the soil 

shear stress. In that paper, the simplified Biot consolidation equations are also solved numerically. 

Both analytical and numerical examples are given to validate the error estimation method proposed 

in that paper. 

Most analytical models assume the soil to be an isotropic medium while natural soils always 

display some degree of anisotropy. The effects of soil anisotropy will have great effect on the 

sea bed response. They are revealed as the anisotropy of the soil Young's modulus, Poisson's 

ratio, and permeability. Analytical solutions which consider the soil anisotropy are complicated 

(Gatmiri 1992; Jeng 1997). Yuhi and Ishida (2002) gave simplified analytical solutions for the 

wave-induced response of a cross-anisotropic seabed of infinite thickness for both slightly and 

fully saturated conditions. 
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The literature mentioned above for liquefaction is almost all based on the linear theory of Biot 

consolidation. There are other theories proposed to explain the phenomenon of liquefaction. Foda 

et al. (1993) considered the rheological properties of marine sediment and incorporated them into 

potential flow equations for both water layer and the fluidized mud layer. The fluidization depth of 

the sediment is solved as a function of the imposed wave height. 

Aside from analytical models, numerical models, especially from computational geomechan-

ics, have also been developed to predict the liquefaction in the soil (Zienkiewicz et al. 1999). The 

poro-elastic model is the simplest constitutive relationship, and it is used in most analytical mod­

els. The elasto-plastic model is more popular in computational geomechanics, and it gives results 

which are closer to the experiment. Although it is easier to implement different constitutive re­

lationships, the non-linearity associated with these relationships increases the computational cost 

tremendously. 

Taiebat (1999) developed a three-dimensional elasto-plastic finite element model for the lique­

faction problem of offshore foundations. By representing the variables of an axis-symmetric body 

as a discrete Fourier series, the three-dimensional problem is reduced to several small problems 

and therefore the computational cost is also reduced. This author proposed a new procedure for the 

liquefaction analysis of offshore foundations subjected to storm loadings. The numerical model is 

used to evaluate the liquefaction problem of Ekofisk tank which is constructed in North Sea. 

Dunn et al. (2006) used the finite element model, DIANA-SWANDYNE II (Chan 1995) to 

study the wave-induced liquefaction around offshore structures. It is a two-dimensional model with 

the plane strain assumption. It solves the fully coupled Biot dynamic equation for both drained and 

undrained conditions. Different constitutive relationships are implemented in the model. Among 

many other interesting results, the authors found that the excessive pore pressure builds up more 

quickly around the structure and the boundary conditions at the structure have a great effect on the 

results. 

Although many numerical models have been developed to solve sea bed response under waves, 

most of them just use the wave pressure on the water-bed interface by wave theory. This is valid 
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when there is only water wave and sea bed interaction. But when there is extra object in the 

system (such as pile, semi-buried foundation, etc.), the water flow around the object will be highly 

three-dimensional and it is not easy to get an analytical solution from wave theory. Wave, sea 

bed, and object form a large coupled system. Multi-physics numerical models have been widely 

used to solve these coupled systems. The approach in these models is to solve different governing 

equations on different domains and to couple the system through common boundaries or other 

ways. Three-dimensional CFD models can be used to predict the free surface wave field and the 

results can be used as boundary condition for the sea bed governing equations (Liu and Garcia 

2006b; 2007a). 

The structure of this chapter is as follows. The governing equations for the consolidation of 

poro-elastic soil will be introduced. Source term, which is responsible for the excessive pore 

pressure generation, is added to the governing equations. Under some simplifications, the new 

equations system for the period-averaged pore pressure has analytical solutions. The analytical 

solutions of the sea bed pore pressure due to the progressive waves found in the literature are 

summarized. For deep sea bed, the behavior of the pore pressure is estimated using an asymptotic 

method. Numerical simulations which include the source term effect are carried out, and the results 

are compared with experiment and analytical solutions. At the end, a tentative effort is made 

to simulate the phase-resolved residual pore water pressure buildup process using the numerical 

model introduced in Chapter 4 with an extra source term from the current chapter. 

5.2 Governing Equations 

5.2.1 Three-Dimensional Biot Consolidation Equations 

Governing equations for the poro-elastic seabed two-phase media is the Biot consolidation equa­

tion (Biot 1941): 
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GV2v + 
G 

l - 2 i / 
V(V-v) = Vp 

k^0 n dp d ._ . 

7 V p = î + ̂ (v'v) 

(5.1) 

(5.2) 

Eq. 5.1 is the force balance equation of the bed soil, and Eq. 5.2 is the storage equation which de­

scribes the mass balance of the pore water. Here p is the pore water pressure, v is the displacement 

of soil skeleton. G is the shear modulus of soil, v is the Poisson ratio of the soil, K is the coeffi­

cient of the isotropic permeability of soil, 7 is the specific weight of water, /3 is the compressibility 

of pore water, and n is the soil porosity. These equations assume that the hydraulic permeability 

is isotropic and the stress-strain relationship is linear. Strain tensor e is defined in terms of the 

displacement vector v as 

1 vv + (V\y 

and the stress tensor a is related to strain rate e via 

(5.3) 

•pi 

2Ge + 2G-
1 -2v 

tr (e) — p 

(5.4) 

(5.5) 

where I is the unit tensor. tr(e) is the trace of the tensor e which is equal to V • v. This equation 

also states that the stress in soil is constituted by two parts: the effective stress a' supported by 

soil skeleton and the pore water pressure p. Here the stress-strain relationship is slightly different 

from that of an elastic solid. The only difference is that the pore pressure is included for the porous 

media. Plane strain is also assumed here. 
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5.2.2 One-Dimensional Period-Average Pore Pressure Equations 

McDougal et al. (1989) derived the simplified equation governing the buildup of pore water pres­

sure. Assuming that the process is only one-dimensional in the vertical z direction, i.e., the varia­

tions with respect to other directions are negligible, then Eq. 5.1 can be written as 

2-2vd2w dp 
1 — 2z/ dz2 dz 

and Eq. 5.2 becomes 
k d2p n dp d2w 
7 dz2 K' dt dzdt 

Taking the derivative of Eq. 5.6 with respect to t and Eq. 5.7 with respect to z, and then cross 

eliminating the terms with w, the equations become 

' d3p ^ d2p 

v dzs dzdt 

where Cy is the coefficient of consolidation which has the form of 

Gk 2-2u 
Cv

 7 ( l - 2 l / )+ (2-2!/) f K ' 
Integrating Eq. 5.8 with respect to z gives 

at dz1 

where c is a constant. Moving-averaging Eq. 5.10 gives the governing equation for the period-

averaged pore pressure 
dp d2p 
dt v dz 
^ = ^ + / (5.11) 
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The period-averaged pore pressure is defined as 

1 ft+T , 
P=TJ

 pdt (5,12) 

where T is the wave period. Eq. 5.11 is a diffusion equation with a source term / which is 

the amount of pore water pressure generated per unit time and per unit volume. Although from 

the derivation of the Eqs. 5.8 5.10 and 5.11, / should only be a function of time t, McDougal 

et al. (1989) suggested that in general / can be considered to be a function of both time t and 

space variable z. Careful examination of Eq. 5.11 reveals that the excessive pore water pressure is 

generated through the source term / and spreads with sediment depth through the diffusion process 

where cv plays the role of diffusion coefficient (Sumer and Freds0e 2002). 

In order to solve Eq. 5.11, the following boundary conditions and initial conditions are needed: 

p(z,0)=p(0,t) = 0 (5.13) 

^ M = 0 (5.14) 
oz 

where h is the depth of the sediment. When the sediment is very deep, i.e., h —• +oo, Eq. 5.14 

still holds. 

The source term / for the excessive pore water pressure generation comes from the cyclic shear 

of the soil. It is important to know the normal and shear stresses in the soil due to waves beforehand 

since most of the models for the source term / depend on the stress state of the soil. Analytical 

solutions for wave-induced stresses in sea bed sediment have been developed by researchers (Ya-

mamoto et al. 1978; Madsen 1978; Okusa 1985; Jeng and Hsu 1996). In Jeng and Hsu (1996), the 

amplitudes of the oscillatory pore water pressure and the shear stress for a saturated, isotropic sea 

bed of finite thickness are given by 

Po = i^Tt [(1 ~ 2 M ) ^ 2 e ~ f o ~ c ^ + ( 1 ~At) ^ ~ k ^ (Ch€r&z ~Cee^ ( 5 ' 1 5 ) 
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TO = Pb [(Ci - C2kz) e~kz - (C3 - CAkz) ekz + k8 {C5e-Sz - C6e
6z)] (5.16) 

where 

Ph = 
pwgH 

(5.17) 
2 cosh /cd 

is the amplitude of the dynamic wave pressure on the bottom of the sea bed. Here, the pw is 

the density of water, H is the wave height, k is the wave number, and d is the water depth. The 

coefficients C\ to C6 and the parameter 5 can be found in Jeng and Hsu (1996). 

There are two categories of mechanisms, namely nonlinear and linear mechanisms, which can 

be used to model the source term. Both categories are listed below. 

Nonlinear Pore Water Generation Mechanism 

De Alba et al. (1976) related the excessive pore water generation with the number of load cycles 

in a simple shear test. The equation is given as 

Vg 1 1 . -
-r = ;r + - sin 
a0 2 7T "£ 1 (5.18) 

where pg is the amount of excessive pore water pressure generated, a'0 is the initial effective stress, 

iV is the number of cyclic loading, ./V/ is the number of cycles to liquefaction. 9 is a shape factor 

which is suggested to have a value of 0.7 by Seed etal. (1975). The relationship given by Eq. 5.18 

with different values of 6 is plotted in Fig. 5.1. 

The source term for pressure generation should be 

f = ^L 
dt 

2(T'o ( r k 
- i 

7T4 1 >-Kw)' TN,0 

where t is time and T is the period of the cyclic loading. 
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Figure 5.1: Excessive Pore Water Pressure Generation as a Function of Cyclic Load Number 
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Linear Pore Water Generation Mechanism 

The nonlinear mechanism from the experiment can be simplified to get the linear approximation. 

In Fig. 5.1, when 6 = 0.7, it is very close to the linear relationship which is also plotted. Seed 

et al. (1975) proposed the linear mechanism as 

%• = £ (5.19) 

Thus, the source term for the pore water pressure generation should be 

f = 9pg_ 
J dt 

- ( 
dt \ 

^0 

< , t 

TNi 

For both mechanisms, the number of cyclic loadings to liquefaction Ni is a function of the 

cyclic shear stress ratio (Seed and Booker 1978) 

Ni=[—r) (5.20) 

Wo/ 

where r is the amplitude of the shear stress due to the cyclic loading and the two dimensionless 

parameters a and j3 are functions of the soil type and the relative density. 

5.3 Numerical Simulation of One-Dimensional Excessive Pore 

Pressure Buildup Process 

Even the simplified solutions to the analytical model introduced in this chapter are complicated, 

and some assumptions such as isotropic can not be satisfied in real world. Analytical approach is 

not always easy to be used. In this section, a numerical model is developed for the general one-
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dimensional seabed response under waves. The results are used to compare with those from the 

analytical solutions. 

The residual pore water pressure equation is solved by using the open source CFD package 

OpenFOAM OpenCFD (2006). This package is designed to solve partial differential equations 

(PDEs) as long as the PDEs can be written in the specified format. Differential operators, such as 

time derivative, Laplacican operator, and divergence, are implemented in the code. OpenFOAM 

uses finite volume method to solve the equations. The residual pore water pressure equation is a 

simple diffusion equation with a source term. It can be easily solved in OpenFOAM as follows. 

fvMatrix PEqn 

( 

fvm::ddt(P) 

- fvm::laplacian(C_nu, P) 

src 

); 

PEqn.solve(); 

The term s r c is the source term. The shear stresses used to define the source term can be 

calculated by using the numerical model introduced in chapter 4. This is the approach used by 

Cheng et al. (2001). The shear stress can also be calculated by using the analytical solution of 

oscillatory response of sea bed due to water waves (Jeng and Hsu 1996). Both approaches will 

give the same results. For simplicity, the shear stresses and therefore the source term are defined 

by the analytical solution. The schemes to discretize each term is denned in the file fvScheme 

which is listed below. 
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ddtSchemes 

{ 

default Euler; 

} 

gradSchemes 

{ 

default Gauss linear; 

grad(V) Gauss linear; 

} 

divSchemes 

{ 

default 

div(V) 

} 

laplacianSchemes 

{ 

default none; 

laplacian(V) Gauss linear corrected; 

} 

interpolationSchemes 

{ 

default linear; 
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} 

snGradSchemes 

{ 

default corrected; 

} 

Here, the time derivative is discretized by using the Euler method, and the Laplacian opera­

tor is discretized by using the Gauss theorem and a second order linear correction for the non-

orthogonality of the mesh. The details of each entry can be found in the manual of OpenFOAM. 

5.4 Analytical Solution of One-Dimensional Excessive Pore 

Pressure Buildup Model 

Jeng et al. (2007) gives the analytical solutions to the excessive pore pressure generation model. 

Under the conditions of finite depth, shallow and deep soil, the solutions can be expressed in 

different forms. The details of the derivation can be found in Jeng et al. (2007). In this section, 

only the results are listed. For the deep soil condition, the result given by Jeng et al. (2007) is not 

easy to use. Based on this, a simplified estimation is proposed in this section using the asymptotic 

method. Some errors in their paper are pointed out. Calculations are carried out to estimate the 

time scale and maximum pressure depth. 

The analytical solutions depend on the relative depth of the sediment, d/L, which is the ratio 

between the sediment depth and the water wave length. Different authors have various criteria for 

the relative depth (McDougal et al. 1989; Jeng et al. 2007). Table 5.1 lists the three regimes by 

different authors. There are no clear-cut between different regimes, and both criteria are applicable. 
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Table 5.1: Criteria for the Relative Depth 

McDougal et al. (1989) Jeng et al. (2007) 

shallow d/L < 1/20 d/L < 1/10 

finite 1/20 < d/L < 1/2 1/10 < d/L < 3/10 

deep d/L > 1/2 d/L > 3/10 

For finite and shallow soil depth, it is easy to solve the boundary value problem by using 

Fourier series expansion method. For deep soil depth, Laplace transformation can be used for the 

problem in the semi-infinite space. 

5.4.1 Finite Depth Soil Solution 

For the finite depth soil model, the residual pore water pressure can be expressed as 

p = f > „ ( l - e - c " ^ 2 ) s i n f e ) (5.21) 

an = —T2 f{r)sm(-^-)dr (5.22) 

where / is the general source term as in the last section, and kn = l2"-~1)7r. 

5.4.2 Shallow Soil Solution 

For shallow soil, where the relative soil depth h/L < 0.1, the wave-induced shear stress can be 

approximated as 

r = m,Phz (5.23) 

where the definition of m can be found in Jeng et al. (2007). Then the source term / can be 

approximated as 

f = az (5.24) 
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where 

a = 
(1 + 2K0) 7' 

3T 
2m R 

-, i 

a (1+2iC0)7' 

Then the excessive pore water pressure can be written using a Fourier series as 

(5.25) 

V 2cv 
h2z-

n - l 
ane 

Cvkltlh* -:-. / ^ n £ 
sin (5.26) 

0 rh / r3 

h r h / ( ' 
(5.27) 

Jeng et al. (2007) did not give the final form of the Fourier series coefficients an. It is straight 

forward to give a closed form 

4/j3 
fln^^J [3 S i n kn ~kn(3 + kl) COS kn 

OKn 

(5.28) 

5.4.3 Deep Soil Solution 

For deep soil, where the relative soil depth h/L > 0.3, the source term can be approximated as 

/ = bze -\z (5.29) 

where 

and In Jeng et al. (2007), b is defined as 

(5.30) 

b = a ( — 
.m. 

(5.31) 

where m is defined the same as in the shallow soil solution. This is not correct since the wave 

induced shear stresses are different for shallow soil and deep soil conditions. For shallow soil, the 

shear stress can be approximated as a linear function of z with m as a linear coefficient. But for 
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deep soil, m can not be denned for the whole soil depth. This could be a typographical error. The 

correct form of b should has the form as in Jeng and Seymour (2007) 

7 1 + 2K0 

T 3 
kPh 

«7 
' 1+2A' 

1/0 

(5.32) 

Then the governing equation for the excessive pore water pressure can be written as 

dp 
~dt 

d2p 
OZ 

Xz (5.33) 

with boundary conditions 

p(0,t) = p(z,0) = 0 and ^\z=o0,t = 0 
az 

In Jeng et al. (2007), the boundary condition at z = oo is set as p(oo, t) = 0. It is incorrect, 

which will be shown later. Following the procedure in Jeng et al. (2007), Equation 5.33 is rescaled 

according to 

C = cv\\ P 
cvX

3p 
A 

and y = Ax 

The rescaled equation and initial/boundary conditions are 

d^_^p_ _y 

dt; dy2 (5.34) 

P « U ) = P(y,0) = 0 and a P ( O ° ' C ) = 0 
dy 

At steady state, the equation becomes 

d2P 
+ ye.-y = 0 (5.35) 
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Integrate the equation twice 

P(y) = -e-y(2 + y) + Ciy + C2 

The coefficients C\ and C2 are determined by the boundary conditions 

P(y = 0) = 0 : -e-°(2 + 0) + Cx * 0 + C2 = 0 C2 = 2 

<9P(y = oo) 
dy 

0:e"°(2 + 0 ) - e - ° + C1 = 0 =» d = 0 

If the boundary condition at y = oo is set as in Jeng et al. (2007), then 

P(y = oo) = 0 : -e.-°°(2 + oo) + C1*oo + 2 = 0 

Then Ci can not be determined which means the boundary condition is not suitable. 

Thus, the steady state solution is 

P(y,0 I ( I+ 1 ) (5.36) 

The full solution to equation 5.34 can be derived using Laplace transformation method. Jeng 

et al. (2007) did not give the details of the derivation. The details of the laplace transformation and 

inverse transformation are given in Appendix B. The full solution is 

J % 0 = 2 1 _ ( | + i ) e-y -± H - ^ — sin ^rydr (5.37) 

The analytical solution in Jeng et al. (2007) involves improper integration over infinite domain. 

It is not easy to evaluate the solution. This difficulty is illustrated as follows. 

The numerical evaluation of the improper integral in Eq. 5.37 needs some effort since the upper 

limit of the integration is +oc and the integrand is unbounded at r = 0. Fig. 5.2 shows the plots 
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of the integrand f(r; y, £) as a function of r, where 

/('•;i/»0 = ^ ^ j 8 i n ( > / n , ) (5.38) 

The integrand is not zero only on a very narrow band near r = 0 and it goes to +00 very fast 

as r —> 0. This characteristic can be used to get some estimation using asymptotic method. On 

the other hand, numerical methods such as mid-point rule and Simpson's rule can be used. Due 

to the singularity, the iteration numbers to achieve desired accuracy needs to be very large. For 

comparison, the integral is evaluated using mid-point rule. The integration is from 0 to 1 since 

the contribution from 1 to +00 is essentially small. The interval is divided into 100 subintervals 

and the sum of the contributions from each subinterval is calculated. If desired accuracy is not 

achieved, the size of the subintervals is doubled. Suppose fk is the result from step k, then the 

iteration relative error can be defined as 

Relative Iteration Error = ~ (5.39) 
\jk\ 

Fig. 5.3 shows the relative iteration error for fixed £ and fixed y. For both cases, the interval 

needs to be divided into thousands of subintervals to achieve 2% accuracy. In order to achieve the 

same accuracy, for fixed £, the number of subintervals increases as y increases (deep into the bed). 

For fixed y, the number of subintervals does not show any pattern. In general, higher accuracy 

requires more subintervals. 

It is not convenient to evaluate the excessive pore pressure using numerical integration. In this 

chapter, the solution is estimated using asymptotic expansion. 

Asymptotic Analysis of the Long Term Behavior of Excessive Pore Pressure 

When £ is large, the asymptotic expansion will reveal the long term behavior. As seen from the 

previous section, when £ —> +00, the only contribution comes from a small strip of 0 < r < e, 
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where e ~ o(l). Then 

Plug into the integral, 

(r + 1) 
(1 - r )2 ~ 1 - 2r (5.40) 

So 

I 
oo ^ 

r ^ r _|_ jy 
sm(y/ry)d, r ~ 

00
 11 — 2r 
e~^ — sin( \ /n/)dr 

o r 

o 

~ - r f ( ^ ) - ^ e « 

sin(yfry)dr — 2 / e ^ S H ^ A / H / ) ^ 

P ( j / , 0 ~ 2 l _ f J / + l> | e-»-erf(-^-)+
 y 

e 45 as £ —>• +oo (5.41) 

The error function can be approximated as 

erf(x) 1 — exp —x 
j 4/7r + ax2 

1 + ax2 for x > 0 (5.42) 

where 
8 7 T - 3 

(5.43) 
37T7T — 4 

In Fig. 5.4, the integral as a function of £ and y is plotted. Both the results from numerical 

method and asymptotic method are shown. The results from both methods are almost identical. 

For the same y, the integral decreases to zero as time £ increases to infinity. At the same time £, 

the integral increases to an asymptotic value as y goes deep into the soil. 

Fig. 5.5 shows the relative error using the asymptotic estimation. The exact value of the 

integral is calculated using the numerical method with the successive change of the iterations less 

than 0.1%. The maximum relative error is around 1.5%. When y increases, i.e., deep into the soil, 

the relative error increases. When time £ increases, the relative error also increases. 
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Figure 5.4: Integral Evaluation Using Numerical Method and Asymptotic Estimation: (a) Same 
(£ = 100) (b) Same y (y = 5) 
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Due to the diffusion nature of the equation, it will take infinite time to reach the steady state. 

It is useful to get some information on where the pore pressure will reach 99% of the maximum 

value and for each depth, how long it will take to reach 99% of its steady state. Using the numerical 

method and asymptotic analysis, the excessive pore pressure is plotted in Fig. 5.6. 
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Numerical 
Asymptotic 

0.0 0.2 0.4 0.6 6.S 1.0 \2 1.4 L6 L8 2.0 

Excessive Pore Pressure P(y£) 

Figure 5.6: Excessive Pore Pressure Development for Deep Soil 

At steady state, the position y — y99% where the pore pressure reaches 99% of the maximum 

value can be solved using 

\2 + 1 e 2*0.99 y99% = 5.99 

At y = 2/99%, the time it takes for the excessive pore pressure to reach 99% of local maximum 

value (i.e. Fmax = 1.98) is about £ = 116533. Fig. 5.7 shows the relationship between the time and 

the percentage of the local maximum pore pressure at y = y99%. With the percentage increasing, 

the time needed increases. 
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Figure 5.7: Excessive Pore Pressure Development at y = y99% 
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5.5 Comparison Between Numerical and Analytical Solutions 

In this section, the results from both numerical and analytical solutions are compared for different 

soil and wave conditions. Three different depths of soil are calculated using the model developed 

in the previous sections. For shallow and finite depth soil models, comparisons are done between 

the numerical and analytical solutions. For deep soil model, asymptotic solution is also compared. 

Numerical simulations are carried out using a uniform grid along the depth. The total grid number 

for all simulations is 1000. The numerical accuracy can be improved when the total number of grid 

is increased, especially in the region where the residual pressure gradient is high. For the purpose 

of this chapter, 1000 grids along the depth give a good representation of the solution. 

The test cases used in this chapter are from Clukey et al. (1985) where pressure accumulation 

experiments are done in a small wave tank. Wave-induced liquefaction data in this chapter is also 

used by many authors (McDougal et al. 1989; Cheng et al. 2001; Jeng et al. 2007). Parameters 

for the soil used in the experiments are listed in Table 5.2. Only Run 3-1 of Clukey et al. (1985) is 

used in this chapter and the liquefaction results from the experiment is listed in Table 5.3. For the 

soil depth used in Clukey et al. (1985), d = 0.84m, and the wave length in Run 3-1, L = 3.473m, 

the relative soil depth is d/L = 0.242. This falls in the range of finite to deep soil. In order to 

verify the models in this chapter, soil depth d is set to be 0.11m, 0.84m and 10m for shallow, finite, 

and deep soil models. Only when d = 0.84m, the model can be validated with experiments. 

Table 5.2: Soil Parameters from Clukey et al. (1985) 

Poisson's ration 0.49 

Shear modulus (N/m2) 5.6 x 105 

Submerged weight (N/m2 8.5 x 103 

Permeability (m,/s) 4 x 10~8 

Porosity 0.46 

Lateral earth pressure coefficient 0.4 

a 0.246 

/3 0.165 

c„ 0.000156 
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Table 5.3: Liquefaction Experiment Results of Clukey et al. (1985) (Run 3-1) 
Wave Period 

(s) 

Wave Height 

(m) 

Water Depth 

(TO) 

Soil Depth 

(TO) 

Residual Pore Pressure 

Depth (TO) Pressure(/ciV/m2) 

1.76 0.22 0.5 0.84 0.04 0.77 
0.10 0.96 
0.35 2.20 
0.47 2.54 

5.5.1 Comparison for Shallow Soils 

For the shallow soil model, since there is no measurement, the only comparison is between the re­

sults of numerical model and analytical model. Here, the soil depth is set as 0.11m, corresponding 

to d/L = 0.032. The results are plotted in Fig. 5.8. Both results agree with each other. The pore 

pressure at the soil surface is zero due to the boundary condition. The maximum pore pressure is 

always at the impermeable boundary at z = d. The steady state solution is also plotted. From the 

figure, the result at t = 100s is close to steady state. 
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Figure 5.8: Comparison between Numerical and Analytical Solutions for Shallow Soil (d/L = 
0.032) 
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5.5.2 Comparison for Finite Depth Soils 

Fig. 5.9 shows the comparison between the results of the numerical model and the analytical 

model. Here the soil depth is set as the same as in the experiment of Clukey et al. (1985). Again, 

both results agree with each other very well. Steady state solution is also plotted. The solution at 

t — 10000s is close to steady state. The shape of the residual pore pressure for finite depth soil is 

similar to that of shallow soil where residual pressure is zero at the surface and maximum pressure 

is achieved at the bottom. But for finite depth soil, the time to get steady state is longer than that 

of shallow depth. 
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Figure 5.9: Comparison between Numerical and Analytical Solutions for Finite Depth Soil (d/L = 
0.242) 

For finite deposit soil, the experiment results can be used to validate the model. In Fig. 5.10, 

the data from Clukey et al. (1985) is plotted. The model used in this chapter gives fairly good 

results 
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Figure 5.10: Comparison between Numerical and Experimental Results for Finite Depth Soil 
(d/L = 0.242) 

5.5.3 Comparison for Deep Soils 

For the deep soil case, the soil depth is set as d = 10m, which corresponds to d/L = 2.879. The 

comparison between the numerical solution and the analytical solution is plotted in Fig. 5.11. At 

steady state, the whole soil column has almost the same residual pressure except that at the top 

portion the pressure decreases to zero due the effect of diffusion. The time for the deep soil case 

to get to close to the steady state is far more than the previous two cases (shallow and finite depth). 

From the figure, at t — 100000s, the maximum pore pressure almost reached its final state. The 

majority part of the soil column below that point is still far away from steady state. 

The comparison is also done between the numerical results and the asymptotic solutions. It 

is plotted in Fig. 5.12. The agreement is clearly shown in the figure. The asymptotic solution 

proposed in this chapter can be used to get a faster solution of the problem. 
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Figure 5.11: Comparison between Numerical and Analytical Solutions for Deep Soil (d/L 
2.879) 
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Figure 5.12: Comparison between Numerical and Asymptotic Solutions for Deep Soil (d/L 
2.879) 
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5.6 Numerical Model For Phase-Resolved Residual Pore 

Pressure and Liquefaction Potential Under Waves 

The one-dimensional model introduced in the previous sections is only for the period-averaged 

residual pore pressure. It is applicable when the interaction is only between the wave and the 

seabed. In reality, the situation will be more complicated and the application of the one-dimensional 

model is limited. In engineering practice, it is important to know the liquefaction potential around 

the structure foundation or pipe lines. Because of the presence of these structures, the water wave 

field in the vicinity will be changed. Therefore, the wave-induced shear stress in the soil will also 

be changed. With one-dimensional model, it is impossible to capture the interactions between 

waves, structure, and sea bed. The three-dimensional numerical model developed in Chapter 4 

has been used to investigate the oscillatory response of the sea bed under waves. In this section, a 

tentative effort is made to modify the model to study the residual response of the seabed. 

The governing equation for the force balance of the soil is the same as Eq. 5.1. For the storage 

equation, an extra source term corresponding to the excessive pore pressure generation is added. 

The new storage equation has the form 

K at at 7 K 

where / is given as in the previous section for the one-dimensional period averaged model. 

5.6.1 Two-Dimensional Test Case for the Experiment by Clukey et al. 

(1985) 

Fig. 5.13 shows the domain of the problem. The depth of the soil is 0.84 m and the length of the 

domain is set as the water wave length. Left and right boundaries are periodic. The pressure at the 

bed surface is set as the progressive water wave pressure. At the bottom, slip boundary condition 

is set for the displacement and zero gradient is set for the pressure (i.e., impermeable). 
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Figure 5.13: Schematic View for the 2D Residual Liquefaction Test Case 

Total simulation time for this case is 20T, where T is the wave period. In Fig. 5.14 and 

Fig. 5.15, both the water wave pressure field and the pore pressure field are plotted for different 

moments during one wave period. At the beginning of simulation, not too much residual pressure 

has been generated. The pressure field is similar to that of momentary liquefaction, i.e., the source 

term effect is negligible. With time increases, the pore water pressure generated is much more than 

which is dissipated. Except for the near surface region, the whole soil column almost has uniform 

residual pore pressure (see Fig. 5.15). 

Two probe points are placed in the center plane (x = 1.737m) of the simulation domain to 

record the time development of residual pore pressure. Those two probe points are at z = —0.1m 

and z = —0.8m. The recorded residual pore pressure is plotted in Fig. 5.16. Also plotted is the 

period-average of both signals. At both probe points, the pressure signal oscillates around the trend 

line (the period-average). It is clear that the residual pore pressure increases to some asymptotic 

value for both depth. The asymptotic value for z = — 0.1m is lower than that for z = —0.8m 

which is as expected by analytical solution. 

In Fig. 5.17, the residual pore pressure profiles at the center plane x = 1.737m in one typical 

wave period are plotted. The data plotted is from the last simulated wave period (t = 19T —> 20T). 
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Figure 5.16: Time Series For the Residual Pore Pressure at Different Depth 

From the figure, the residual pore pressure during this last simulated wave period still oscillates 

but is close to steady state solution. At the upper portion near the bed surface, the amplitude of the 

pore pressure oscillation (p{) is larger than that at the lower portion of the soil (p2)-

The period-averaged residual pore pressure profile is plotted in Fig. 5.18. For comparison, 

the one-dimensional analytical solution is also plotted. A large amount of difference between 

the one-dimensional and two-dimensional results is observed. However, the result from the two-

dimensional model is closer to the experiment data. One reason could be that the one-dimensional 

model neglects the variation along the x direction. The neglect of x direction variation will change 

the shear stress which is a function of du/dx and therefore introduce error for residual pore pres­

sure. 

5.7 Discussion 

The one-dimensional residual pore pressure buildup model used in this chapter is only for the 

period-averaged pressure. It is only valid in the sense of averaging. This model is good for the 

137 

JUUU 

fe, 2500 
>-, 

o 

pfiS 

2000 

1500 

1000 



www.manaraa.com

0.0 

-0.2 

N -0.4 
Si -^ 
0) 

-0.6 

-0.8 

\* ^ H 

t t J-T/1A 
I — I +11IV 

t = t0+3T/10 

I — l 0 + J 1 / l U 

- — t = t0+7T/10 

i i 

"'--.7 -̂î  
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investigation of the liquefaction trend in the soil. The detailed pore pressure buildup process 

(oscillation around the mean value) is lost. 

The classification of three different regimes of soil (shallow, finite depth, and deep) are not so 

apparent. For shallow soil, the shear stress induced by the waves should be approximately linear 

with the depth. For deep soil, the shear stress should be able to be written in the general form 

ye~y. If the approximated shear stress is far away from these forms, the proposed solutions can 

not be used. As pointed out by Cheng et al. (2001), the solutions are sensitive to the shear stress 

(the sensitivity depends on the soil regime and the parameter /3), and different approximation of 

the shear stress will lead to huge difference in the solutions. In general, the finite depth model 

(with the full solution of the shear stress) is valid for all three regimes. No approximation is made 

for the shear stress, therefore, it can be used as a general solution. 

The model used in this chapter depends on the coefficients from the experiment (especially 

a and ft). These coefficients are only for the soil used in the experiment. When soil conditions 

change, these coefficients should also change. As mentioned earlier, the results are very sensitive 

to these coefficients. More experimental work should be done to give good description of these 

coefficients. 

5.8 Conclusion 

In this chapter, a one-dimensional period-averaged residual pore pressure model is introduced. The 

governing equation for the residual pore water pressure is a diffusion equation with a source term 

which represents the generation of the pore pressure. Although this source term comes from the 

analytical derivation of the equation, it is given by experiments. Linear and nonlinear forms of 

the source term were proposed by De Alba et al. (1976). For nonlinear form of the source term, 

the governing equation can only be solved numerically while for linear form of the source term, it 

can be solve both numerically and analytically. According to the relative depth d/L, the soil can 

be classified into three different regimes (shallow, finite depth, and deep soils). In each regime, 
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the analytical solution for wave induced shear stress is used for the source term. Based on the 

solutions given by Jeng et al. (2007), some errors are corrected in this chapter and revised forms 

of the solutions are given. 

For deep soil model, the solution by Jeng et al. (2007) has an improper integral and is not easy 

to use. The difficulty to evaluate the solution numerically due to the singularities is illustrated in 

this chapter with the help of examples. Based on the form of the improper integral, an asymptotic 

solution is proposed in this chapter. This asymptotic solution has a closed form and is easy to 

evaluate. 

Besides an analytical approach, numerical solutions for the residual pore water pressure are 

also given by using the differential equation solver package OpenFOAM. The results from analyt­

ical solutions, numerical solutions, and asymptotic estimations are compared. Perfect agreement 

has been achieved. For finite depth soil, the experiment data of Clukey et al. (1985) are used for 

validation. The models in this chapter predict the liquefaction fairly well. 

A numerical model is also introduced for the phase-resolved residual pore pressure. The basic 

idea of adding a source term to the governing equation is used. The source term has the same form 

as that of the period-averaged residual pore pressure model. Test cases show that this model gives 

good results when comparing with the one-dimensional period-averaged model. 
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Chapter 6 

Summary 

This thesis addresses two mechanisms in the interaction between water, sediment, and structures, 

namely scour and liquefaction. Both mechanisms are closely related to each other. Numerical 

models are developed to simulate and study the process. 

6.1 Numerical Models for Scour 

For scour, two-dimensional and three-dimensional models are developed. Two-dimensional model 

is suitable for large scale and long term scour process, while the three-dimensional model is suit­

able for detailed local scour around structures. 

6.1.1 Two-Dimensional Scour Model 

The coupled model of two-dimensional SWEs and sediment transport on unstructured mesh was 

implemented for scour problems on complex domains. This coupled modeling approach is neces­

sary when the scour process is rapid. When the scour process is slow (such as long term aggrada­

tion/degradation of natural rivers), both the usual quasi-steady approach and the coupled approach 

can give good results. However, the numerical stability of the quasi-steady approach will present 

difficulty. High order discretization of the Exner equation may lead to non-physical oscillations 

which could be incorrectly interpreted as ripples and sand waves. Low order discretization of the 

Exner equation may under-estimate the amplitude of die real sand wave or even smear it out. The 

hyperbolic nature of the Exner equation (even though there is dispersion effect in the equation) 

makes it possible to couple it with SWEs and to use Godunov schemes. The coupled model with 
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a higher order Godunov scheme proposed in this thesis can capture the real wave accurately while 

controlling the growth of non-physical oscillations. 

An asymptotic analysis was done to gain an insight about the wave speed structure and to 

construct an explicit expression for the Roe's flux. It also gave a fast and accurate evaluation of 

the eigenvalues/vectors. Comparing to the numerical iteration method for the eigen-system, the 

asymptotic approximation is far more efficient. For the test case used in this paper, the average 

computational time can be reduced by approximately 64%. 

The interpolation method of the TVD scheme used in the current numerical model for the 

upwind ratio of consecutive gradients is based on the virtual upwind node. The basic assumption 

is that the gradient from upwind node to downwind node is the same as that from center node 

to downwind node. This assumption simplifies the calculation and reduces the stencil. Future 

research is needed on the comparison of different interpolation methods and TVD schemes. 

6.1.2 Three-Dimensional Scour Model 

Numerical model FOAMSCOUR for local scour with free surface and automatic mesh deformation 

is proposed. The turbulence model used is the simple two equation k — e model. Other turbulence 

models, even large eddy simulation, can be used to improve the accuracy of the fluid flow field 

simulation. All these models are readily implemented in OpenFOAM. The free surface is modeled 

by VOF method while the scour process is modeled by moving mesh method. These two methods 

for moving boundaries(free surface and bed) are coupled together. Each method has its merits 

and shortcomings. Eulerian approach can be used to capture the complex scour profiles. Flow 

field is coupled with sediment transport (both bed load and suspended load) using a quasi-steady 

approach. Parallel computations are used to reduce the CPU time which is usually tremendously 

large for morphological simulations. 

Numerical simulations for turbulent wall jet scour and wave scour around large vertical cylin­

der are carried out and compared with experiments. Good results have been obtained using the 

proposed modeling approach. Velocity field and other flow field characteristics compare fairly 
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well with experimental observations. The maximum scour depths and local scour profile fit well 

with the experiment data. Further research is needed to investigate the effects of turbulence model 

for free surface waves (especially for near breaking and breaking waves) and to study the possibil­

ity of using an Eulerian approach for morphological modeling. 

For the effect of the free water surface, the following conclusions are drawn. For the submerged 

wall jet case, the water depth in the flow domain is much bigger than the jet opening and the free 

surface changes very slowly. This makes the rigid-lid approximation a reasonable one. For scour 

around slender piles under waves, the rigid-lid assumption is also valid since the most important 

mechanism here is the vortex shedding and horseshoe vortex. However, for the wave-induced 

scour around large piles, it is unreasonable to use the rigid-lid approximation since the dominant 

mechanism here is the phase-resolved component of the wave flow and the steady streaming. 

In the current numerical model, the two moving surfaces (water free surface and moving bed) 

are captured by different approaches, namely Eulerian and Lagrangian approaches. The free sur­

face is solved by the CICSAM VOF scheme, which is an Eulerian approach. The moving bed is 

captured by the mesh deformation method, which is a Lagrangian approach. The scour test cases 

in the paper are relatively simple. For more complicated problems, if there are objects interacting 

with the fluid phase and the bed, the moving mesh technique will not be appropriate. The interface 

between the object, water and bed is very complicated and changing with time. Simply moving 

the grid point along the interface will be not feasible. For such cases, the Eulerian approach (VOF 

or LSM) can be used to implicitly track the interface. This could provide new research direction 

in the scour problem and currently is being explored by the authors. 

There is some limitation when using the mesh deformation approach to capture the interaction 

of many phases. The mesh deformation approach is hard to implement with the presence of in­

teraction between moving objects and the bed or when the boundary movement is irregular. Also, 

when the amplitude of the boundary movement is big enough, the mesh may be highly distorted, 

and the deteriorated mesh quality will make the computation difficult to converge, eventually lead­

ing to unstable solutions. In order to avoid these problems, the dynamic mesh approach should be 
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used. In the dynamic mesh approach, mesh cells can be split or merged when necessary. How­

ever, when comparing them with mesh deformation, the dynamic mesh approach is more difficult. 

Combining these two approaches can be promising for scour problems where the scour pattern is 

complicated and the scour/deposition depth is very large. 

6.2 Numerical Models for Liquefaction 

Two different liquefaction mechanisms (momentary and residual liquefactions) are considered in 

this thesis. 

6.2.1 Momentary Liquefaction 

The numerical model in this paper can solve the coupling problem between waves, object (struc­

ture) and sea bed response. The wave induced shear stress and pore pressure in the soil is governed 

by the Biot consolidation equation. The free surface is modeled by the VOF method and the wa­

ter wave is generated by numerical wave maker boundary conditions. Instead of using the finite 

element method to do stress analysis inside the bed material (which is the traditional method used 

in geotechniques), an iterative numerical scheme is proposed to solve the Biot consolidation equa­

tion using finite volume method. The new scheme shows a fast convergence rate as well as a high 

accuracy. The coupling between water waves and the sea bed is through pressure and stress con­

dition on common boundaries. Two numerical tests of the proposed scheme is carried out. First, 

the numerical case tests the consolidation solver part of the numerical model. Good agreement 

with analytical results is obtained. The second case is a 3D test to study the interaction between 

the waves, the sea bed and the object. A box is half buried in the wave tank. More complicated 

geometries can be simulated as well. From the results, excessive pore pressure of the sea bed as 

well as the liquefaction potential can be analyzed. 

For geotechnical problems, a realistic stress-strain constitutive relationship is one of the most 

important aspects for the ability of the numerical model to reproduce real situations. In this thesis, 
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the simple linear isotropic elastic model is used to describe the soil skeleton. More advanced 

and accurate constitutive models (such as variable elasticity, elasto-plastic model and visco-plastic 

model, etc.) can be easily incorporated in the current numerical code. The anisotropic effect can 

also easily come into the model since the code is based on the tensorial description of the equations 

and anisotropic tensors can be included inside the differential operators. 

In the three-dimensional test case, the object is assumed to be at fixed position during the 

computation. This is not always true since when liquefaction occurs, the soil can no longer support 

the object and the object will move. Even without liquefaction, the object could rotate or slide 

under the influence of fluid force. All these make the problem extremely complicated and it is 

impossible to include all factors into the numerical model. However, by fixing the object in one 

position, it is possible to investigate the possibility of liquefaction and analyze the dynamics of the 

system. This could be useful for engineers to design structures and foundations to prevent damage 

under extreme conditions. 

6.2.2 Residual Liquefaction 

One-dimensional period-averaged residual pore pressure model is introduced. The governing 

equation for the residual pore water pressure is a diffusion equation with a source term which 

represents the generation of the pore pressure. Although this source term comes from the ana­

lytical derivation of the equation, it is given by experiments. Linear and nonlinear forms of the 

source term were proposed in the literature. For a nonlinear form of the source term, the governing 

equation can only be solved numerically while for a linear form of the source term, it can be solve 

both numerically and analytically. According to the relative depth d/L, the soil can be classified 

into three different regimes (shallow, finite depth, and deep soils). In each regime, the analytical 

solution for the shear stress is used for the source term. Based on the solutions given by Jeng et al. 

(2007), some errors are corrected in this thesis, and revised forms of the solutions are given. 

For the deep soil model, the solution by Jeng et al. (2007) has an improper integral and is not 

easy to use. The difficulty to evaluate the solution numerically due to the singularities is illustrated 
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in this thesis with examples. Based on the form of the improper integral, an asymptotic solution is 

proposed. This asymptotic solution has a closed form and is easy to evaluate. 

Besides an analytical approach, numerical solutions for the residual pore water pressure are 

also given. The results from the analytical solutions, the numerical solutions, and the asymptotic 

estimations are compared. Perfect agreement has been achieved between both. For the finite depth 

soil, the experimental data of Clukey et al. (1985) are used for validation. The proposed model 

predicts liquefaction fairly well. 
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Appendix A 

Asymptotic Analysis of Eigenvalues 

A.l Eigen-systems When u^ ^ 0 

The regular expansion is used to approximate the roots of Eqn. 2.27. Assume 

A = Ao + eAi + 0(e2) (A.l) 

Substituting Eqn. A.l into Eqn. 2.27 and expanding give 

1 
1 - f^ ) Ao - 2A2, + 3A3 + [1 - Ao + fcAi - 4A0A! + 3Ao%] e + 0(e2) = 0 (A.2) 

Equating the coefficients of like powers of e gives 

1 
1 - ^ 2 ) A° - 2Ao + 3Ao = 0 (A.3) 

1 - Ao + fcAi - 4AoAi + 3AgAi = 0 (A.4) 

Solving these equations gives the eigenvalues as 

A« = -£— (A.5) 

A(2) = 1 + ^ + , ' • , (A.6) 
Fr 2(± + l) 

A(3) = 1 - ^ r^ r (A.7) 
FT 2 ( ^ - 1 ) 
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The regular expansion breaks down when Fr = 1. The region of non-uniformity is determined by 

comparing the successive terms in the expansion (Nayfeh 1981). So the order of 1 — 1/Fr2 is 

' " W ^ T ^ E (A.8) 

i.e. 

Also since 

then 

Let 

1-Tr=°^) 

1 + ̂  = °(1) 

1 -
pr2 

0(e*) 

1 -
Fr2 ae? where a = 0(1) 

In order to get the right expansion in near critical flow regime, it is assumed that 

A = A0 + emX1 + m > 0 (A.9) 

Substituting Eqn. A.9 into Eqn. 2.27 gives 

[Xl + 3X2emX1 + 3X0e
2mX2 + • • • ] - 2 [X2 + 2A0e

mA! + c2mX2 + • • • ] 

+ A0ae5 - A0e + aem+^Xl - Aiem+1 + + e = 0 
(A. 10) 

For the proper balancing of terms in Eqn. A. 10, m = 1/2 is chosen. Equating the same powers of 

e gives 

0 ( 1 ) : Ag - 2Ag = 0 =» A0 = 0 or A0 = 2 (A.ll) 

0(e5) : 3AgAi - 4A0Ai + A0CT = 0 (A. 12) 
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For Ao = 0, Eqn. A. 12 is satisfied automatically and Xi should be calculated through higher order 

terms. For A0 = % Eqn. A. 12 gives 

Ai = -
a 

3An - 4 2 

0(e) : 3A0At - 2\{ - A0 + a\x + 1 = 0 (A. 13) 

For A0 = 0, Eqn. A. 13 gives 

Ai 
a ± Vv2 + 8 

So in the region of 1 — -^ = 0(es), the eigenvalues are 

A(1) = 2 - -62 = - + 
2 2 2Fr2 

A(2) = <T + Va2 + 8 ^ = 1 
4 4 

l - i + Jfl--^r] +8e 
pr2 Fr2 

A(3) = <T-Vt72+8cl = 1 

4 4 Fr2 v(1-^) + 8e 

These eigenvalues are similar to those in Lyn and Altinakar (2002). 
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A.2 Eigen-systems When u^ = 0 

There are two sub-cases. When u^ = 0 and un ^ 0, the four eigenvalues are 0, 0, — ̂ /gh + gkv%, 

and yjgh + gkvfy The right eigenvector matrix is 

R = 

-1 

0 

0 

1 

0 

0 

1 

0 

_h_ 
kv-n 

-h^/gh+gkv? 

h 

1 

h 

h^/gh+gkv% 

h 

1 

(A. 14) 

and left eigenvector matrix is 

L 

h+kv% 

h+kv% 

• " K 
2h+2kv$ 

2h+2kv% 

kv^_ 

2h,Jg(h+kv*) 

2hyjg(h+kvl) 

0 

1 

0 

0 

h+hv* 

hv 
h+kv* 
kvv 

2h+2kv% 

2h+2kvl 

(A. 15) 

When v,£ = 0 and un = 0, the four eigenvalues are 0,0, —\fg~h, and \fgh. The right eigenvector 

matrix is 

R 

and the left eigenvector matrix is 

- 1 0 —^ 
vgh 

0 0 1 1 

0 1 0 0 

1 0 0 0 

(A. 16) 

L 

0 

0 

2 

Vgh 
2 

0 0 

0 1 

\ o 

\ 0 

1 

0 

2 

s5 

(A. 17) 
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Appendix B 

Analytical Solution of Pore Pressure 
Buildup in Deep Soil 

Take Laplace transformation of Eqn. 5.34 with respect to £: 

L(P((,y)) = Q(s,y) = / e-*U&y)<% 
Jo 

then Eqn. 5.34 becomes 

sQ = Qyy + ~ye-y (B.l) 

with boundary/initial conditions 

Q(s, y = 0) = 0 and Q(s, oo) = 0 

Eqn. B.l is a second order quasi-linear ODE with boundary conditions specified at y = 0 and 

y = oo. The solution of the equation is 

Q(s,y) = R(s,y) + V(s,y) (B.2) 

where 

*(̂  = 7(Sr- md VM = -&hr"/h 

Taking inverse Laplace transformation of each term in Eqn. B.2 will give the final solution of 

P(y,0-
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Inverse Lapalace Transformation of R(s, y) 

It is easy to do inverse Laplace transformation of R(s, y). 

1 p+ioo _ v _ o 

L"1 (R(s, y)) ™ / y\ y'e*<*d8 (B.3) 
2vrz Jy_ioc, s(s - l)2 ' 7 —IOC' 

R(s, y) has a simple pole at s = 0 and a doulbe pole at s = 1. So the integral can be evaluated 

using Cauchy's residue theorem. Fig. B.l shows the contour in the s-plane and the two poles. By 

Cauchy's residue theorem, 

[ R{s,y)esids+ [ R(s,y)esids = 2TriRess=SkR(s,y)esi A: = 1,2 (B.4) 
JCi JCR 

Using Jordan's lemma, when R, —>• +00, Jc R(s,y)es^ds —»• 0. So the only contribution 

comes from the residues. Now let R —> +00, 

r*7+ioo 

= Ress=SfeJR(s,y)es« A; = 1,2 

The residues at the two poles are calculated as following. For 5 = 0, it is a simple pole and the 

function can be written as 

R(s,y)esS = [S,V) where $(s,y) = e v 6 Ays -y-s) 
s (s — \y 

(B.5) 

So 

Ress=0R(s, y)eai = $(0) = e~y{-y - 2) (B.6) 

For s = 1, it is a double pole and the function can be written as 

R(s,y)ea* = p ^ where $(s,y) = e~y—(ys - y - s) (B.7) 
[s i) s 
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So 

$'(1) 
Ress^R(s,y)esi = ~^-

e^(2 + y-2s^-sy( + s2yO 

e-y&{2 + y-2£) 

(B.8) 

(B.9) 

(B.10) 

Combine the previous results, then 

L-1 (R(s, y)) = e-y [-2 - y + e«(2 + y- 2£)] (B.ll) 

Figure B.l: Contour Integration Path around Two Poles for R(s, y) 
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Inverse Laplace Transformation of V(s, y) 

The inverse Laplace transformation of V(s,y) is relatively complicated comparing to that of R(s, y) 

since it involes the branch cut in the complex domain. R(s, y) has a simple pole at s = 0 and a 

double pole at s — Lit also needs to choose a branch cut for <fs. For simplication, the branch cut 

is as the negative real axis. Fig. B.2 shows the contour and the branch cut. 

Aim 

Branch 

Figure B.2: Contour Integration Path around Two Poles and Branch Cut for V(s, y) 

According to Cauchy's residue theorem, the contour integration becomes 

f + f + f + ( + l + f =2mRess=SkR(s,y)est A: =1 ,2 (B.12) 
Jci JcR, JL\ JC0 Jhi JcRr> 

Using Jordan's lemma, when R —> +oo, j c —> 0 and JCR —• 0. Now let's consider the 

paths of LI and L2. On the complex plan, the complex number can be expressed as s = rel9, 

154 



www.manaraa.com

where r is the modulus and 6 is the argument. Let 

2 
f(s,y) = V(s,y)est = \,2e

si~^ - " e[*
(Inr+i0>] (B.13) 

On LI, 6* = 7r, s = rei,r: 

f(.o iA = -

-r(r + 1) 
f^y) = , 2 , ^ e - * - ^ (B.14) 

On L2, 0 = —7T, s = re 

^ = -r{r + iye~r'+lV~ry ( B-1 5 ) 

Then 

/ = ["—r^2e~r'~iyrTVdr (B-16) 

7LI Jfl r(r + l)2 
r-fl 

/ , 2, ̂ e-'t-^dr (B.17) 
J^ r ( r + l ) ^ 

I / + i ) 2 e r€ [cos (V^y) - * s i n (Vry)] dr (B.18) 

f = f --rTTT2erri+lV¥ydr (fi-19) 
7L2 Jp r(r +1)2 

fR 2 
= / —/ l 1 \ 2

e r? tcos(v^"J/) + * s i n(Vn/)] dr (B.20) 

So, when p —• 0 and i? —> +oo 

LI JL2 JO 

+oo e-r£ 

+ / = - 4 ? / r ( r +1)2 s i n W*V)dr (B.21) 

and when p —> 0, the integration along the path Cp can also be evaluated using the Cauchy's 

residue theorem. The residue at s = 0 is calculated as following. The function f(s) can be written 
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as 

Us) = - ^ where $(s) = T ^ e * " ^ (B.22) 
5 [S — l)A 

So 

Ress=0 = $(0) = 2 (B.23) 

Then 

= -2mResa=0 = -Am (B.24) 

The residue at s = 1 is calculated as following. Since s = 1 is a double pole, the function f(s) 

can be written as 

f(s) = . $ ^ \ „ where $(s) = - e * " ^ (B.25) 
(S — 1) 5 

So 

RPR. , = -

l! 

Put all the terms together and after some manupilation, the inverse Laplace transformation of 

Ress=1 = . - U = -e~y+H2 + y - 2£) (B.26) 

V(s, y) can be written as 

L-1(V(5/(/)) = 2 - e ^ + « ( 2 + | / - 2 0 - - /• , sin(y/?y)dr (B.27) 
7T Jo r(r + l)z 

The final solution for P(y, £) has the form 

P(y,0 = L~l(R{s,y)) + L-\V(s,y)) (B.28) 

1 /"°° e~r^ 
= 2 l - ( ^ + l ) e " y - - / , • sin y/fydr 

V2 / 7r J0 r(r + l)2 
(B.29) 

which is the same as in Jeng et al. (2007). When time goes to infinity, the integral in equation 

5.37 goes to zero since e~r^ will be infinitesimally small. The final steady state solution is just the 

first part of equation 5.37 which is exactly the same as equation 5.36. The steady solution is plotted 

in Fig. B.3. The excessive pore pressure at the bed surface is always zero and the the excessive 
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pore pressure at infinite depth is 2. 

o.o 

•3 
& 
D 

Excessive Pore Pressure P 

0.5 1.0 1.5 2.0 

Figure.B.3: Steady State Solution of the Excessive Pore Pressure for Deep Soil 
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